The Rural Technology Initiative ceased operations in 2011. This site is maintained as an archive of works from RTI collaborators from 2000 to 2011 and is no longer updated. RTI's successor and remaining staff can be found at NRSIG.org


     
 
   
Search the RTI Website
 
Click to go to the Precision Forestry Cooperative website
Click to go to the RTI Home page
Click to go to the About RTI page
Click to go to the RTI Projects page
Click to go to the RTI Publications page
Click to go to the RTI Tools page
Click to go to the RTI Geographic Information Systems page
Click to go to the RTI Streaming Video Directory
Click to go to the RTI Training page
Click to go to the RTI Contacts page
Click to go to the RTI Image Archive
Click to go to the RTI Site Map
Click to go to the RTI Links page


7. APPENDICES

Table of Contents

** Back to Main Thesis' Table of Contents **

7.1 Appendix A: Forest
7.1.1 Biomass equations
7.1.2 Factors to convert tree biomass to carbon (kg)
7.1.3 Constants for decomposition and mortality used in woody debris dynamics
7.1.4 Snag densities
7.1.5 Wood densities for selected tree species
7.2 Appindix B : Products CORRIM
7.3 Appindix D: Economic analysis (Based on Kevin Zobrist model for the PNW)
Tables

7.1 APPENDIX A: FOREST

7.1.1 Biomass equations


Each component has species-specific equations and coefficients to accomplish the computations. The following defines the known species, equation used, and respective coefficients.


Equation 1: Biomass = exp( b0 ) * (dbh b1)
Equation 2: Biomass = b0 + b1 * (d2 * ht/100)
Equation 3: Biomass = b0 + b1 * (d2 * ht/100) - b2 * (d2 * ht/100)2


Species = Equation number, b0, b1, b2

Foliage Biomass
Big Leaf Maple (Acer macrophyllum) =
1, -3.7650, 1.6170, 0.0000
Grand Fir (Abis grandis) =
1, -2.8462, 1.7009, 0.0000
Red Alder (Alnus rubra) =
2, 0.5124, 0.1298, 0.0000
Western Hemlock (Tsuga heterophylla) =
1, -4.1300, 2.1280, 0.0000
Douglas fir (Pseudotsuga menziesii) =
1, -2.8462, 1.7009, 0.0000
Western red cedar (Thuja plicata)
=
1, -2.8462, 1.7009, 0.0000


Litter fall Biomass
Big Leaf Maple (Acer macrophyllum) =
1, -2.1160, 1.0920, 0.0000
Grand Fir (Abis grandis) =
1, -3.5290, 1.7503, 0.0000
Red Alder (Alnus rubra) =
1, -2.1160, 1.0920, 0.0000
Western Hemlock (Tsuga heterophylla) =
1, -2.4090, 1.3120, 0.0000
Douglas fir (Pseudotsuga menziesii) =
1, -3.5290, 1.7503, 0.0000
Western red cedar (Thuja plicata)
=
1, -3.5290, 1.7503, 0.0000

Root Biomass
Big Leaf Maple (Acer macrophyllum) =
1, -3.4930, 2.7230, 0.0000
Grand Fir (Abis grandis) =
1, -4.6961, 2.6929, 0.0000
Red Alder (Alnus rubra) =
3, 0.1000, 0.4800, 0.0005
Western Hemlock (Tsuga heterophylla) =
1, -4.6961, 2.6929, 0.0000
Douglas fir (Pseudotsuga menziesii) =
1, -4.6961, 2.6929, 0.0000
Western red cedar (Thuja plicata)
=
1, -4.6961, 2.6929, 0.0000

 

Live Branch Biomass
Big Leaf Maple (Acer macrophyllum) =
1, -4.2360, 2.4300, 0.0000
Grand Fir (Abis grandis) =
1, -3.6941, 2.1382, 0.0000
Red Alder (Alnus rubra) =
1, -4.2360, 2.4300, 0.0000
Western Hemlock (Tsuga heterophylla) =
1, -5.1490, 2.7780, 0.0000
Douglas fir (Pseudotsuga menziesii) =
1, -3.6941, 2.1382, 0.0000
Western red cedar (Thuja plicata)
=
1, -3.2661, 2.0877, 0.0000

 

Stem Biomass    
Big Leaf Maple (Acer macrophyllum) =
1, -3.4930, 2.7230, 0.0000
Grand Fir (Abis grandis) =
1, -3.0396, 2.5951, 0.0000
Red Alder (Alnus rubra) =
3, 0.0200, 1.6000, 0.0005
Western Hemlock (Tsuga heterophylla) =
1, -2.1720, 2.2570, 0.0000
Douglas fir (Pseudotsuga menziesii) =
1, -3.0396, 2.5951, 0.0000
Western red cedar (Thuja plicata)
=
1, -4.1934, 2.1101, 0.0000

Bark Biomass    
Big Leaf Maple (Acer macrophyllum) = 1, -4.5740, 2.5740, 0.0000
Grand Fir (Abis grandis) = 1, -4.3103, 2.4300, 0.0000
Red Alder (Alnus rubra) = 1, -4.5740, 2.5740, 0.0000
Western Hemlock (Tsuga heterophylla) = 1, -4.3730, 2.2580, 0.0000
Douglas fir (Pseudotsuga menziesii) = 1, -4.3103, 2.4300, 0.0000
Western red cedar (Thuja plicata)
= 1, -4.3103, 2.4300, 0.0000

From: Gholz, H.L., C.C. Grier, A.G. Campbell, and A.T.Brown. 1979. Equations for estimating biomass and leaf area of plants in the Pacific Northwest. Forest Research Lab, Oregon State University, Corvallis, Oregon.

 

 

7.1.2. Factors to convert tree biomass to carbon (kg)
Region
Forest Type
Softwood
Hardwood

Rocky Mountainand Pacific Coast Douglas-fir
0.512
0.496
Ponderosa Pine
0.512
0.496
  Fir-Spruce
0.512
0.496
  Hemlock-Sitka Spruce
0.512
0.496
  Lodgepole pine
0.512
0.496
  Larch
0.512
0.496
  Redwoods
0.512
0.496
  Hardwoods
0.512
0.496

From: Birdsay, R.A. 1992. Carbon storage and accumulation on United States forest ecosystems. USDA Forest Service General Technical Report. WO-59.

7.1.3 Constants for decomposition and mortality used in woody debris dynamics
Forest Type
Decomposition
Mortality

Douglas-fir
0.018
0.005
Ponderosa Pine
0.015
0.005
Fir-Spruce
0.024
0.005
Hemlock-Sitka Spruce
0.029
0.006
Lodgepole pine
0.036
0.0045
Redwoods
0.012
0.0021
Hardwoods
0.067
0.006

From: Harmon, M. 1993. Woody debris budgets for selected forest types in the U.S. Pages 151-178 in D.P Turner, J.J Lee, G.J Koerper, and J.R. Barker editors. The forest sectorcarbon budget of the United States: carbon pools and flux ender alternative policy options.EPA/600/3-93/093. United States Environmental Protection Agency, Corvallis, Oregon, USA


7.1.4 Snag densities

(density in grams of dry mass per cubic centimeter of green volume)
Decay Class
Douglas Fir
Western Hemlock

I
0.390
0. 383
II
0.369
0.319
III
0. 221
0.230
IV
0.166
0.172
V
0.127
0.127
From: Spies, T.A.,J.F. Franklin, and T.B. Thomas. 1988. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69:1689-1702.



7.1.5 Wood densities for selected tree species

Coastal Douglas fir
0.45
Interior Douglas fir
0.46
Western hemlock
0.42
Pacific silver fir
0.40
Western red cedar
0.32
Red alder
0.37
From : Hartman, D.A., W. A. Atkinson, B.S. Bryant and R.O Woodfin. 1976. Conversion factors for the Pacific Northwest forest industry; Converting forest growth to forest products. Institute of Forest Products, Seattle, Washington.


7.2 Appendix B : Products CORRIM


Summary mill data for wood component

Exported results from SimaPro LCI for raw materials from the production of one Mbf of planed dry lumber

Exported results from SimaPro LCI for air emissions from the production of one Mbf of planed dry lumber

 

7.3 Appendix D : Economic analysis

Based on Kevin Zobrist model for the Pacific Northwest


Codes:


1
2
3
4
5
Plant
Veg
PCT
CT
CC

REVENUES AND COSTS ROTATION CASE
 
2010
2025
2035
2055
2075
2085
2115
1995
120 year Revenue
($44)
$1,211
 
$4,771
 
$7,747
$29,294
 
Log cost  
$907
 
$1,539
 
$2,050
$6,333
 
Stumpage  
$304
 
$3,233
 
$5,697
$22,961
 
Net
($62)
$304
 
$3,233
 
$5,697
$22,961
($263)
Code
3
4
 
4
 
4
5
1
40 base Revenue
($56)
 
$10,291
         
Log cost    
$3,983
         
Stumpage    
$6,309
         
Net
($62)
 
$6,309
       
($263)
Code
3
 
5
       
1
80 year Revenue
($56)
$1,198
 
$4,835
$20,761
     
Log cost  
$907
 
$1,539
$4,726
     
Stumpage  
$290
 
$3,296
$16,035
     
Net
($62)
$290
 
$3,296
$16,035
   
($263)
Code
3
4
 
4
5
   
1


REVENUES AND COSTS INTENSITY CASE
 
2010
2025
2035
2040
2045
1995
40 base Revenue
($56)
 
$10,291
     
Log cost    
$3,983
     
Stumpage    
$6,309
     
Net
($62)
 
$6,309
   
($263)
Code
3
 
5
   
1
40 high Revenue
($30)
$1,398
$9,019
     
Log cost  
$1,027
$3,186
     
Stumpage  
$371
$5,833
     
Net
($62)
$371
$5,833
   
($263)
Code
3
4
5
   
1
50 high Revenue
($30)
$1,356
   
$12,963
 
Log cost  
$1,027
   
$3,732
 
Stumpage  
$329
   
$9,231
 
Net
($62)
$329
   
$9,231
($263)
Code
3
4
   
5
1

 

CASH FLOW ROTATION CASE
Stand  
2010
2025
2035
2055
2075
2085
2115
1995
120 year SEV Start              
1995
SEV End            
2115
 
Cash Flow
($62)
$304
 
$3,233
 
$5,697
$22,961
($263)
Future
($10,463)
$24,535
 
$60,382
 
$24,624
$22,961
($91,882)
 
40 base
SEV Start
              1995
SEV End    
2035
         
Cash Flow
($62)
 
$6,309
       
($263)
Future
($211)
 
$6,309
       
($1,854)
 
80 year
SEV Start
             
1995
SEV End        
2075
     
Cash Flow
($62)
$290
  $3,296
$16,035
   
($263)
Future
($1,486)
$3,330
  $8,746
$16,035
   
($13,052)
 

CASH FLOW INTENSITY CASE
Stand  
2010
2025
2035
2040
2045
1995
40 base SEV Start          
1995
SEV End    
2035
     
Cash Flow
($62)
 
$6,309
   
($263.34)
Future
($211)
 
$6,309
   
($1,853.91)
 
40 high
SEV Start
         
1995
SEV End
   
2035
     
Cash Flow
($62)
$371
$5,833
   
($263)
Future
($211)
$604
$5,833
   
($1,854)
 
50 high
SEV Start
         
1995
SEV End
       
2045
 
Cash Flow
($62)
$329
   
$9,231
($263)
Future
($344)
$874
   
$9,231
($3,020)
 

 

NET PRESENT VALUE (5 % discount rate)
Stand
SEV
 
Stand
SEV
120
($153)
40 base
$463
40
$463
40 high
$484
80
$39
50 high
$404

 
School of Environmental and Forest Sciences
USDA Forest Service State & Private Forestry
WSU Cooperative Extension
The Rural Technology Home Page is provided by the College of Forest Resources. For more information, please contact the Rural Technology Initiative, University of Washington Box 352100 Seattle, WA 98195, (206) 543-0827. © 2000-2004, University of Washington, Rural Technology Initiative, including all photographs and images unless otherwise noted. To view the www.ruraltech.org privacy policy, click here.
Last Updated 10/13/2022 11:34:37 AM