The Rural Technology Initiative ceased operations in 2011. This site is maintained as an archive of works from RTI collaborators from 2000 to 2011 and is no longer updated. RTI's successor and remaining staff can be found at NRSIG.org


     
 
   
Search the RTI Website
 
Click to go to the Precision Forestry Cooperative website
Click to go to the RTI Home page
Click to go to the About RTI page
Click to go to the RTI Projects page
Click to go to the RTI Publications page
Click to go to the RTI Tools page
Click to go to the RTI Geographic Information Systems page
Click to go to the RTI Streaming Video Directory
Click to go to the RTI Training page
Click to go to the RTI Contacts page
Click to go to the RTI Image Archive
Click to go to the RTI Site Map
Click to go to the RTI Links page


References

PROJECT HOME | BACKGROUND | METHODOLOGY | RESULTS AND DATA | REFERENCES

Alig, R. J., and R. G. Healy. 1987. Urban and built-up land area changes in the United States: an empirical investigation of determinants. Land Economics 63 :215-226.

Alig, R. J., D. Zheng, T. A. Spies, and B. J. Butler. 2000. Forest cover dynamics in the Pacific Northwest west side: regional trends and projections.

Azuma, D. L., K. R. Birch, P. DelZotto, A. A. Herstrom, and G. Lettman, J. 1999. Land Use Change on Non-Federal Land in Western Oregon, 1973-1994. in S. Oregon Department of Forestry, OR, editor.

Barlow, S. A., I. A. Munn, D. A. Cleaves, and D. L. Evans. 1998. The effect of urban sprawl on timber. Journal of Forestry 96 :10-14.

Barnsley, M. J., and S. L. Barr. 1996. Inferring urban land use from satellite sensor images using kernel-based spatial reclassification. Photogrammetric Engineering and Remote Sensing 62 :949-958.

Bechtold, W. A., and P. L. Patterson, editors. 2005. The enhanced Forest Inventory and Analysis program: national sampling design and estimation procedures. USDA Forest Service, Southern Research Station, Asheville, NC.

Benz, U., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry & Remote Sensing 58 :239- 258.

Bernstein, R., J. B. Lotspiech, J. Myers, H. G. Kolsky, and R. D. Lees. 1984. Analysis and processing of Landsat-4 sensor data using advanced image processing techniques and technologies. IEEE Transactions on Geoscience and Remote Sensing 22 :192-221.

Bitelli, G., R. Camassi, L. Gusella, and A. Mognol. 2004. Image change detection on urban area: the earthquake case. in ISPRS Journal of Photogrammetry & Remote Sensing. PRIN Italian research project, Istanbul.

Blaschke, T. 2004. Integrating GIS and image analysis to support the sustainable management of mountain landscapes. Pages 123-138 in W. Widacki, A. Bytnerowicz, and A. Riebau, editors. A Message from the Tatra: Geographical Information Systems and Remote Sensing in Mountain Environmental Research. Jagiellonian University Press.

Bradshaw, T. K., and B. Muller. 1998. Impacts of rapid urban growth on farmland conversion: application of new regional land use policy models and geographical information systems. Rural Sociology 63 :1-25.

Campbell, J. B. 1983. Mapping the land: aerial imagery for land use information. Association of American Geographers, Washington, D.C.

Civco, D. L., J. D. Hurd, E. H. Wilson, M. Song, and Z. Zhang. 2002. A Comparison of land use and land cover change detection methods. Pages 12 in 2002 ASPRS-ACSM Annual Conference and FIG XXII Congress.

Dai, X., and S. Khorram. 1998. A hierarchical methodology framework for multisource data fusion in vegetation classification. Int. J. Remote Sensing 19 :3697-3701.

Desclée, B., P. Bogaert, and P. Defourny. 2004. Object-based method for automatic forest change detection. Pages 3383-3386 in IGARSS'04 Proceeding of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, Alaska.

Duggin, M. J., and C. J. Robinove. 1990. Assumptions implicit in remote sensing data acquisition and analysis. International Journal of Remote Sensing 11 :1669-1694.

Dwivedi, R. S., K. Sreenivas, and K. V. Ramana. 2005. Land-use/land-cover change analysis in part of Ethiopia using Landsat Thematic Mapper data. International Journal of Remote Sensing 26 :1285-1287.

Ebert, A., and J. Helmschrot. 2005. An object-oriented classification approach for land use analysis of the Ruhuna Basin, Sri Lanka using Landsat ETM data. Pages 3 in . Definiens Imaging, Munchen, Germany.

Fung, T. 1990. An assessment of TM imagery for land-cover change detection. IEEE Transactions on Geoscience and Remote Sensing 28 :681-684.

Gitas, I. Z., G. H. Mitri, and G. Ventura. 2004. Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery. Remote Sensing of Environment 92 :409-413.

Gong, P., and P. J. Howarth. 1990. The use of structural information for improving landcover classification accuracies at the rural-urban fringe. Photogrammatic Engineering and Remote Sensing 56 :67-73.

Gordon, S. I. 1980. Utilizing Landsat imagery to monitor land-use change: a case study in Ohio. Remote Sensing of Environment 9 :189-196.

Goulevitch, B. M., T. J. Danaher, A. J. Stewart, D. P. Harris, and L. J. Lawrence. 2002. Mapping woody vegetation cover over the state of Queensland using Landsat TM and ETM+ imagery. in Proceedings of the 11th Australian Remote Sensing and Photogrammetry Conference, September 2002, Brisbane, Australia.

Green, K., D. Kempka, and L. Lackey. 1994. Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric Engineering and Remote Sensing 60 :331-337.

Haack, B., N. Bryant, and S. Adams. 1987. An assessment of Landsat MSS and TM data for urban and near-urban land-cover digital classification. Remote Sensing of the Environment 21 :201-213.

Hall, O., and G. Hay. 2003. Multiscale Object-specific Approach to Digital Change Detection. International Journal of Applied Earth Observation and Geoinformation 4 :311-327.

Hall, O., G. J. Hay, A. Bouchard, and D. J. Marceau. 2004. Detecting dominant landscape objects through multiple scales: An integration of object-specific methods and watershed segmentation. Landscape Ecology 19 :59-76.

Harris, P. M., and S. J. Ventura. 1995. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogrammetric Engineering and Remote Sensing 61 :993-998.

Homer, C., C. Huang, L. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 National Land-Cover Database for the United States. Photogrammetric Engineering and Remote Sensing 70 :829-840.

Howarth, P. J., and E. Boasson. 1983. Landsat digital enhancements for change detection in urban environments. Remote Sensing of the Environment 13 :149-160.

Jensen, J. R., D. J. Cowen, J. Halls, S. Narumalani, N. J. Schmidt, B. A. Davis, and B. Burgess. 1994. Improved urban infrastructure mapping and forecasting for Bellsouth using remote sensing and GIS technology. Photogrammetric Engineering and Remote Sensing 60 :339-346.

Kline, J. D., and R. J. Alig. 2001. A spatial model of land use change for western Oregon and western Washington. Portland, OR.

Lachowski, H., P. Maus, and B. Platt. 1992. Integrating remote sensing with GIS. Journal of Forestry 90 :16-21.

Lambin, E. F., B. L. Turner, H. J. Geist, S. B. Agbola, A. Angelsen, J. W. Bruce, O. T. Coomes, R. Dirzo, G. Fischer, C. Folke, P. S. George, K. Homewood, J. Imbernon, R. Leemans, X. Li, E. F. Moran, M. Mortimore, P. S. Ramakrishnan, J. F. Richards, H. Skanes, W. Steffen, G. D. Stone, U. Svedin, T. A. Veldkamp, C. Vogel, and J. Xu. 2001. The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change 11 :261-269.

Lindgren, D. T. 1985. Land use planning and remote sensing. Kluwer Academic Publishers, Boston, MA.

Lindhult, M. S., J. Fabos, P. Brown, and N. Price. 1988. Using Geographical Information Systems to assess conflicts between agriculture and development. Landscape and Urban Planning 16 :333-343.

Lo, C. P., and X. Yang. 2002. Drivers of Land-Use/Land-Cover Changes and Dynamic Modeling for the Atlanta, Georgia Metropolitan Area. Photogrammetric Engineering and Remote Sensing 68 :1073-1082.

Luloff, A. E., and W. A. Befort. 1989. Land use change and aerial photography: lessons for applied sociology. Rural Sociology 54 :92-105.

Lunetta, R., D. M. Johnson, J. Lyon, and J. Crotwell. 2004. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sensing of Environment 89 :444-454.

Masek, J. G., F. E. Lindsay, and S. N. Goward. 2000. Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. International Journal of Remote Sensing 21 :3473-3486.

Mouat, D. A., G. G. Mahin, and L. J. 1993. Remote sensing techniques in the analysis of change detection. Geocarto International 8 :39-50.

Pax-Lenney, M., C. E. Woodcock, S. A. Macomber, S. Gopal, and C. Song. 2001. Forest mapping with a generalized classifier and Landsat TM data. Remote Sensing of Environment 77 :241-250.

Plantinga, A. J., J. Buongiorno, and R. J. Alig. 1990. Determinants of changes in non-industrial private timberland ownership in the United States. Journal of World Forest Resource Management 5 :29-46.

Seto, K. C., C. E. Woodcock, C. Song, X. Huang, J. Lu, and R. K. Kaufmann. 2002. Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing 23 :1985-2004.

Singh, A. 1989. Digital change-detection techniques using remotely-sensed data. International Journal of Remote Sensing 10 :989-1003.

Song, C., and C. E. Woodcock. 2003. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Transactions on Geoscience and Remote Sensing 41 :2557-2567.

Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney, and S. A. Macomber. 2001. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sensing of Environment 75 :230-244.

Turner, M. G. 1990. Landscape changes in nine rural counties in Georgia, USA. Photogrammetric Engineering and Remote Sensing 56 :379-386.

Turner, M. G., D. N. Wear, and R. O. Flamm. 1996. Land ownership and land-cover change in the southern Appalachian Highlands and the Olympic Peninsula. Ecological Applications 6 :1150-1172.

Walter, V. 2004. Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry & Remote Sensing 58 :225-238.

Wear, D. N., R. Liu, J. M. Foreman, and R. M. Sheffield. 1999. The effects of population growth on timber management and inventories in Virginia. Forest Ecology Management 118 :107-115.

Wilson, E. H., J. D. Hurd, D. L. Civco, M. P. Prisloe, and C. Arnold. 2003. Development of a geospatial model to quantify, describe and map urban growth. Remote Sensing of Environment 86 :275-285.

Yang, X., and C. P. Lo. 2002. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sensing 23 :1775-1798.

Zhang, Q., G. Pavlic, W. Chen, R. Fraser, S. Leblanc, and J. Cihlar. 2005. A semi-automatic segmentation procedure for feature extraction in remotely sensed imagery. Computers & Geosciences 31 :289-296.

Zheng, D., and R. Alig. 1999. Changes in the non-Federal land base involving forestry in western Oregon, 1961-94. Portland, OR.

 
School of Environmental and Forest Sciences
USDA Forest Service State & Private Forestry
WSU Cooperative Extension
The Rural Technology Home Page is provided by the College of Forest Resources. For more information, please contact the Rural Technology Initiative, University of Washington Box 352100 Seattle, WA 98195, (206) 543-0827. © 2000-2004, University of Washington, Rural Technology Initiative, including all photographs and images unless otherwise noted. To view the www.ruraltech.org privacy policy, click here.
Last Updated 10/13/2022 11:34:21 AM