
Automating Contour-Based Route Projection for

Preliminary Forest Road Designs using GIS

Luke W. Rogers

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2005

Program Authorized to Offer Degree:

College of Forest Resources

University of Washington

Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Luke W. Rogers

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

 Peter Schiess

 Gerard Schreuder

 Robert McGaughey

Date:__________________________________

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at

the University of Washington, I agree that the Library shall make its copies freely

available for inspection. I further agree that extensive copying of this thesis is allowable

only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright

Law. Any other reproduction for any purposes or by any means shall not be allowed

without my written permission.

Signature ________________________

Date ____________________________

University of Washington

Abstract

Automating Contour-Based Route Projection for

Preliminary Forest Road Designs using GIS

Luke W. Rogers

Chair of the Supervisory Committee:

Professor Peter Schiess

Management and Engineering Division, College of Forest Resources

By evaluating alternative routes in the office using a pegging routine, days or even weeks

can be saved of valuable field time and ultimately, a better design can emerge. Initial

road design in forested landscapes often includes pegging roads on large-scale contour

maps with dividers and an engineer’s scale. An automated GIS based road-pegging tool

(PEGGER) was developed to assist in initial road planning by automating the road

pegging process. PEGGER is an extension for the commonly available GIS software

ArcView®. PEGGER imports topography as digital contours. The user identifies the

origin of the new road, clicks in the direction they want to go and PEGGER automatically

pegs in road at a specified grade. Through the use of PEGGER, many alternatives can be

quickly analyzed for alignment, slope stability, grades and construction cost using

standard GIS functionality. The resulting cuts and fills are then displayed in

ROADVIEW, a road visualization package for ArcView®. This paper looks at the

algorithm used, evaluates it’s usefulness in an operations planning environment and

suggests additional methods which might be incorporated into PEGGER to further assist

the forest engineer.

 i

Table of Content

Preface.. iii
Introduction... 1
Background... 2

The Importance of Road Design... 3
The Importance of Visualization .. 3
Existing Road Design Models .. 4
Existing Forest Visualization Software .. 8

Objectives ... 9
Automate Manual Processes... 9
“Route Projection” or “Pegging”.. 10
Utilize High-Resolution Topographic Models ... 10
Functional Requirements .. 12

Methods... 14
ArcView.. 14
Pegging ... 15

Analytical Description .. 19
Survey ... 22
Visualization ... 24

Analytical Description .. 25
Discussion... 27

Ease of Use ... 27
Proliferation of Software .. 27
Applications to Management .. 28
Limitations .. 30

Conclusions... 33
Bibliography ... 34
Appendix A – PEGGER Software Manual... 39
Appendix B – PEGGER Avenue™ Code... 54

 ii

List of Figures
Figure 1 - A Daratech study summarized the top nine GIS firms' market share based on
worldwide GIS revenue (software only) in 2001.. 14

Figure 2 - The simple PEGGER user interface in ArcView GIS 3. 17

Figure 3 – The simple PEGGER setup dialog where users specify the contour theme,
elevation attribute, contour interval, and attribute preferences... 18

Figure 4 - The simple PEGGER toolbar where users can change the grade of the desired
road segments and the name of the road... 18

Figure 5 - Flow chart of the PEGGER design and decision process for route location on a
vector based contour dataset. .. 20

Figure 6 - Locating a new route with PEGGER. .. 21

Figure 7 - The PEGGER survey dialog where users can specify survey parameters to
either match field procedures for comparison purposes, or maximize topographic input
into RoadEng with the densify function. .. 22

Figure 8 - The PEGGER survey function allows users to generate survey data for
RoadEng so that it mimics field procedures or so that it maximizes topographic input.
Three different survey densities are shown above with the one of the left most closely
representing typical field survey methods. ... 23

Figure 9 - A PEGGER surveyed road in RoadEng. The digital survey can be imported
into RoadEng using the Criterion .pol unit survey format.. 24

Figure 10 - ROADVIEW visualization of a route located with PEGGER. 25

Figure 11 - Downloads of the PEGGER software from the Rural Technology Initiative
Website from 2002 to 2004 with projected downloads for 2005...................................... 28

Figure 12 - A dirty and well-used field map produced from a road designed using
PEGGER. The road grade and stationing information can be used to locate the proposed
road in the field with just the map and a clinometer... 29

Figure 13 - At shallow grades, PEGGER creates very long segments of road which may
not represent the topography properly. ... 31

Figure 14 - Care must be taken when pegging across stream valleys. Here, the red road
was located using PEGGER, however, the road would likely be constructed more like the
green road. This difference in road length can significantly affect the grade of the road. 32

 iii

Preface
As an undergraduate forest engineering student at the University of Washington I had the

opportunity to spend two summers working for Washington’s largest forest products

company. At Weyerhaeuser, I was impressed by the scale and depth of their geographic

information system, but perplexed as to why the field foresters and engineers had

relatively little access to these tools. Any request for information from the GIS specialists

came back as hard-copy maps, even though the Company was willing to install desktop

GIS software on the engineers’ computers.

In my training as a forest engineer I learned how valuable tools like geographic

information systems could be in guiding management decisions. I was exposed to many

tools including clinometers, relaskopes, laser range-finders, geographic information

systems, optimization programs, and much more. I soon became very interested in how

all of these tools could work together to provide more informed decisions about how to

better manage the forest and the necessary systems that support forest management.

It was while working for those two summers that I realized there was a large disconnect

between university research tools, optimization routines, and the needs of the field

forester. This could not have been more apparent than in the manner in which roads were

initially designed and subsequently located in the field. Typically, the engineer would

look at a 1:4800 scale map (printed from a GIS), briefly glance at a stereo photo set, and

then head to the field to locate a route in a trial and error method. While these engineers

were very good at doing this, based on their many years of experience, I though there

might be a better way. I thought it would be valuable to take advantage of desktop GIS

software and provide some simple tools to help the forest engineer with initial route

location. With that concept in mind, and a generous funding offer from the newly created

UW Rural Technology Initiative, I started a masters program to design a tool that I would

call PEGGER.

 iv

Acknowledgements*

 v

Dedication*

1

Introduction
It can be assumed that since the dawn of forest management, forest road engineers have

sought means to more efficiently analyze alternative road locations. Where survey teams

once blanketed the forest landscape to locate prime route locations, are found only

solitary forest engineers verifying and flagging their chosen road location. This shift in

forest road design methodologies likely began with the first contour maps and continues

to be transformed today by remote sensing technologies like Landsat and LiDAR and the

proliferation of desktop Geographic Information System (GIS) products. It is now

possible for a forest manager to analyze many different road location alternatives over a

large geographic area in a minimal amount of time. Time consuming field work has been

reduced to verification of the chosen alternative and marking it in the field.

This research looks at the differences in forest road planning techniques and the existing

software products that have been developed to assist in forest road location. A computer

program is presented that automates initial forest road location through the use of a

Geographic Information System and digital terrain data. Using PEGGER, forest planners

can quickly analyze many road location alternatives and, by taking advantage of standard

GIS functionality, evaluate environmental and economic opportunities.

A companion program, ROADVIEW, has been developed to assist in communicating

forest road design concepts to those outside of the forestry profession. Using

ROADVIEW, forest planners can quickly show the topographic modifications of a

planned forest road and evaluate visual impacts associated with alternative road locations.

2

Background
There are three broad categories of planning in forest management, strategic, tactical and

operational (Sedjo 1987; Kent, Bare et al. 1991; Schiess and O'Brien 1995; Boyland

2003). Information exchange between these three tiers of forest management planning is

critical in developing a management plan. Strategic planning looks at large areas with

aggregated data typically over long time horizons. A large forest products company may

have one strategic plan for their entire forest land-base with the goal of providing

consistent shareholder returns year after year. Calculating sustained yield occurs at the

strategic planning level.

Tactical planning encompasses a diverse range of activities and geographic areas but

generally is considered to be associated with a specific management block or ownership.

Harvest targets are usually handed down from the strategic level to the tactical level

without regard for the specifics of where the harvest volume will come from. It is the

tactical plan that harbors more specific information on stand volumes, road systems, and

management priorities.

Operational plans are derived from information handed down from the tactical level and

then composed into the specific details of when, where, and how. The tactical plan may

indicate that a stand is ready for harvest and it is the job of the operations planner to

develop a specific harvest plan with road systems, harvest techniques, and conservation

priorities.

At all three levels of the forest management decision making process forest road planning

is required. At the strategic level, planners need to know roughly how much road will be

constructed, maintained or abandoned each year for proper cost accounting and

depreciation. At the tactical level, planners need to know if specific areas of the forest are

reachable by road, which segments of road will need maintenance, where new roads will

3

be constructed and how much it will cost. At the operational level, planners need to know

site-specific information to properly build, maintain, or abandon roads and develop

detailed plans that can be implemented by construction personnel, loggers, and foresters.

Recognizing that office-designed preliminary route locations can save forest managers

time and money and with the advent of computers, researchers and forest management

consultants have produced myriad software packages to assist in the strategic, operational

and tactical aspects of forest road planning.

The Importance of Road Design

The road design and construction process is the most expensive and time consuming

portion of a harvest operations plan (Epstein, Sessions et al. 2001). It is not surprising

then, that so many road design tools and optimization models have been built to assist

with the development of transportation plans. It has been demonstrated that “judicious

and appropriate use of forest engineering tools can enable the designer to develop a far

superior harvest plan (Schiess and O'Brien 1995).” Part of the design process then must

be to “evaluate a sufficient number of alternative routes to locate a final route” that meets

operational and environmental targets (Akay, Karas et al. 2004).

Recognizing that office-designed preliminary route locations can save forest managers

time and money and with the advent of computers, researchers and forest management

consultants have produced myriad software packages to assist in the strategic, operational

and tactical aspects of forest road planning.

The Importance of Visualization

According to Barry (1998) one of the factors that have driven the investment in realistic

forest visualization tools is public scrutiny and tighter guidelines that mandate more

4

accurate planning. Barry goes on to say that “as a result, visual impact assessments--and

their "before and after" simulations--have become key elements of the submission and

approval process [of resource management plans].” McGaughey has identified the

importance of visual design in harvest operations planning: “These [visualization]

applications were designed to meet the needs of visual management specialists

responsible for designing the shape of harvest units and scheduling harvest activities to

minimize the overall visual impact on forested landscapes (McGaughey and Twito

1988).”

Given the increased level of public scrutiny associated with timber resource management

in recent years, visualization tools are becoming invaluable in communicating forest

operations design to the laity. Any road design tool to be developed must include a

visualization component to communicate a proposed route location and analyze the

aesthetic impact associated with its construction. The availability of free visualization

tools like EnVision (McGaughey 2000) and forest management tools like the Landscape

Management System (McCarter 2001) that integrate well with each other make it

practical to develop a road design tool that can complement those existing products.

Existing Road Design Models

Models have been created for all levels of forest management planning. There are many

forest management related models that look at road design, transportation scheduling,

harvest scheduling, water quality, wildlife habitat, visual impacts, carbon sequestration,

growth prediction, cable yarding, grapple skidding, helicopter logging, and others. This

discussion will focus on forest road design and visualization software and where those

models fit into the hierarchical structure of forest management planning.

There are very few strategic forest road planning tools. However, the Forest Service

developed the linear programming model FORPLAN (1985) to address the multiple use

5

problem on the Nation’s Federal lands. While FORPLAN was useful for analyzing broad

National scale issues, it did not address roads directly and a critical evaluation by Kent et

al. (1991) recommended that FORPLAN be redesigned or replaced by “smaller,

hierarchically-based, easier-to-interpret models.” Anderson and Nelson (2004)have

created a vector-based road network model that is “specifically concerned with creating

road networks that are suitable for strategic planning.” They state in their work that an

operational plan must be devised (from the strategic plan) and validated before any forest

road is approved for construction. A model developed in Chile called PLANEX is able to

strategically plan landing locations, harvest settings and access routes on areas as large as

ten thousand hectares relying on coarse raster data to locate the transportation network

(Epstein, Sessions et al. 2001).

At the tactical level, most existing models are focused around optimization of harvest

scheduling and road networks including SNAP (Sessions and Sessions 1988; Sessions

and Sessions 1992), NETWORK (Sessions 1987), and the University of Washington

Timber Harvest Planning System (UWTHPS) (Schiess and O'Brien 1995). These models

are complex and typically unused by the majority of forest operations planners. The

necessary datasets, lack of site-specific control, and time required to setup these systems

has left them without many users.

At the operational level many road design packages have been developed likely starting

in the early 1970’s with programs that ran only on mainframe computers and had no user

interface (Kobayashi 1973). In 1974 what is thought to be the first forest road design

software program for the “modern desk-top calculator” was introduced (Burke 1974). An

attached digitizer was used to input topographic information into the program which was

then processed by analytical routines. The results were then displayed on a plotter for

evaluation and adjustment in an iterative process.

6

Since 1974 many others have introduced road design software packages for the desktop

computer. Of these road design packages (RoadEng, AutoCAD, ROADPAC, F.L.R.D.S.,

TRACER, ROUTES…) only one has given the user the ability to quickly look at

alternative road locations at varying scales, ROUTES (Reutebuch 1988). Traditional road

design software relies on survey data collected in the field to generate terrain models and

very detailed engineered road location and construction plans. Others have taken a more

holistic approach and looked at optimization of road locations for a particular set of

topographical, environmental or economical constraints (Thompson 1988; Cha, Nako et

al. 1991; Xu 1996). All these programs have relied on a high degree of training on the

part of the user and few of the non-commercial packages have matured into an easy to

use software package.

ROUTES was developed to automate the road pegging process. Using a large-scale

contour map (1in = 400ft) and a digitizer, the user could digitize the contours and use the

digitizer puck to locate the road. While the user interface was primitive consisting of high

and low pitch beeps from the digitizer puck to signal that the user was “on-grade”, the

program worked well and kept track of such things as grade, road length and stationing.

ROUTES reliance on a digitizer, its HP 9000 code base and the general lack of a

graphical user interface (GUI) left the program without many users.

TRACER is a PC-based stand-alone program for locating forest roads. TRACER takes a

linear programming and heuristic approach to locate a vertical alignment with the lowest

total costs while conforming to environmental constraints (Akay, Karas et al. 2004).

While TRACER is an excellent tool for analyzing many alternatives it does have its

limitations. TRACER took 15 minutes to complete an analysis on 55 hectares. It did

produce a solution with a 25% cost reduction over another chosen feasible route but may

bee too “black box” for many forest managers. Reisinger and Davis (1985) suggest in

reference to forest planning software that “while these models are often mathematically

elegant from a research standpoint, forest industry managers find them operationally

7

unworkable.” Finding the balance between optimal and workable appears to be the

challenge facing software authors.

Both TRACER and ROUTES are useful tools, however as clearly identified by Dürrstein

(1992) all road design software packages must include several key components to be

most efficient for the end user. According to Durrestein: “Summarizing the existing

experiences and demands of the user, computer-aided detailed road planning [software]

must fulfill the following conditions:

• suited for standardized hardware (e.g. the widespread Personal Computer);

• modular structure corresponding to traditional planning methods for utilizing the

engineer’s experience in planning a road;

• simple handling based on clear screen menus which avoid intensive training in the

use of computer systems and increase acceptance by the forest engineer;

• integrated input of usual field data;

• direct interactions between the user and system during the planning procedure;

• data transfer to standard graphic packages (e.g. AUTOCAD).”

It may be more appropriate to identify opportunities to integrate the forest managers

experience into forest road planning software rather than attempt to find optimal solutions

with “black box” models. Watson and Hill (1983) define a Decision Support System

(DSS) as an “interactive system that provides the user with easy access to decision

models and data in order to support semi-structured and unstructured decision-making

tasks” and suggest that a DSS is essentially an analytic tool to improve the effectiveness

in making decisions where the manager’s judgment is still essential. Reisinger further

states that “the key to successful implementation of a DSS lies in creating a user-friendly

environment in which a manager/planner can interactively obtain answers to practical

questions about the large-scale, complex operations they manage.” Thompson (1988)

states in reference to his own road spacing model that “the model should be viewed as a

tool used to enhance good judgment.”

8

Existing Forest Visualization Software

Another important consideration in forest road design is the visual impact to the

landscape. While current software packages allow you to see where your road will be

located and the geometry associated with its construction, they do not show where the

built road will be taking land out of production. Integration with existing visualization

software is important for communicating design of proposed forest roads. There is the

visual impact of the cut and fill slopes and the narrow strip of trees that must be removed

within the road right of way. By being able to quickly visualize alternatives and compare

the results, aesthetics can be taken into consideration when designing forest roads.

In the early 1970’s, around the same time as the first route projection routines were being

programmed into mainframe computers, three-dimensional visualization routines were

developed. These early 3D perspective terrain tools were primitive, slow, and ran on

mainframe computers (for a more detailed discussion of forest visualization software see

McGaughey and Twito 1988). It probably wasn’t until the introduction of the PC-based

Preliminary Logging and Analysis System and its VISUAL and SLOPE components in

the late 1980’s that visualization became accessible to the forestry community.

Currently, there are a few visualization packages including EnVision, the Stand

Visualization System (SVS), the World Construction Set, Visual Nature Studio (VNS),

SmartForest, Virtual Forest, and most geographic information systems. Of these

packages only EnVision (McGaughey 2000) allows for the landscape wide integration of

forest stand data into the visualization, runs on a PC, and is available free of charge.

9

Objectives
The primary objective of this work is to create a preliminary road design tool that forest

operations professionals will use on a regular basis to supplement their existing toolkit of

aerial photography, paper based maps, clinometers, compasses, geographic information

systems and global positioning (GPS) units. This tool must integrate into existing desktop

software products, incorporate the knowledge of the road engineer, have a simple user

interface, take little or no training to operate, and be simple and easy to use. The tool

must be interactive and empower the road engineer with transparent software logic rather

than over-power them with “black box” optimization technologies. The success of a road

design tool should not only be measured by the optimization of a particular set of criteria

or the cost savings associated with a particular design solution, but by the number of

individuals and organizations using the software.

Automate Manual Processes

With the overwhelming popularity of Geographic Information Systems (GIS) in natural

resource management it is appropriate to explore opportunities to integrate traditional

road design techniques into the GIS. With the availability of free 10-meter digital

elevation data for the United States and the continually decreasing cost of LiDAR data it

is possible to extend the road pegging technique to include a more detailed analysis.

Others (Becker and Jaeger 1992; Dürrstein 1992; Dvorscák and Hríb 1992) have taken

this approach and integrated CAD and GIS. However, the availability of GIS software at

the time was limited to main frames or large centralized computers. As a result access by

engineers and forest land managers was probably infrequent which left these models

primarily with governmental and educational users.

Forest engineers increasingly have more access to desktop GIS software. One of the

many useful things about GIS and software in general is its ability to automate simple

and complex tasks. Identifying opportunities to automate manual processes in the forest

10

road design process, while incorporating the engineers knowledge, may hold the most

promise for a useful tool. Many engineers utilize aerial photography and route projection

on a paper map (or pegging) to identify initial route locations. This process is largely

repetitive and time consuming and can be efficiently automated within a geographic

information system.

“Route Projection” or “Pegging”

Traditional methods for designing a forest road system consisted largely of aerial photo

interpretation and field reconnaissance. More recently, forest engineers have used large-

scale contour maps to select preliminary routes with dividers, a process known as route

projection or “pegging”. According to Pearce (1960), “Route projection is the laying out

of a route for a road on a topographic map or aerial photo. The route defines the narrow

strip of land within which the field preliminary survey is made.”

Utilizing contour maps, engineers can quickly evaluate multiple route locations in the

office and then focus their field work within those areas. In combination with aerial

photography, this trial and error method of initial paper based road location has proven

itself as a cost effective method for preliminary design and analysis by avoiding

expansive field investigations.

Utilize High-Resolution Topographic Models

All route location software relies on topographic models that are commonly referred to as

digital elevation models (DEM) or digital terrain models (DTM). Methods for storing the

data vary from contour lines, to cell-based raster datasets, to triangulated-irregular-

networks or TINs. Most route location software relies on some form the raster data model

in which each cell in the data is assigned a particular elevation value. The appropriate cell

size to use for forest route location is specific to the particular software application and

geography of the area. Many have suggested that a cell size of between 1.0 and 3.0

11

meters is sufficient for operational route location (Coulter, Chung et al. 2001; Akay,

Karas et al. 2004; Krogstad and Schiess 2004).

Digital elevation models can also be stored as contour lines in the GIS. While there is no

cell size associated with line features in a GIS, there is the concept of a reference scale.

USGS digital elevation models are generated from the 1:24,000 topographic quad sheets

that were photogrammetrically derived. Carson and Reutebuch (1997) have shown the

limits of using USGS DEM’s for forest operations planning. The Washington State

Department of Natural Resources has developed contour data products from aerial

photography at a scale of 1:4800. It has been shown that those maps were a significant

improvement over the USGS product, particularly for forest road location and skyline

profile analysis (Schiess and Rogers 1999; Schiess and Rogers 2000; Schiess and Arntzen

2001; Krogstad and Schiess 2004).

While USGS 10 meter digital elevation products and 1:24,000 contours are limited in

their use for forest operations planning, Light Detection and Ranging or LiDAR is being

recognized as a reliable data source for high-resolution elevation models. Referring to a

digital elevation model with a RMSE of 29 cm Pereira (1999) stated that “a [digital

elevation model] derived from laser measurements with an average density of 4 points

per m2 has sufficient quality to represent the terrain relief for the purpose of road

planning and design.” Forest cover plays a large role in the accuracy of LiDAR generated

elevation models. It has been shown however, even under the densest forest canopies that

mean errors are less than 0.5 meters (Reutebuch, McGaughey et al. 2003).

In the forest industry and academic institutions LiDAR has been used to test its

applicability for aiding forest road design. Some work done on Capitol State Forest in

Washington has validated that LiDAR is appropriate for forest road design and can be

used to accurately earthwork (Coulter, Chung et al. 2001). Reutebuch states that in

12

general, the LiDAR DTM was found to be extremely accurate and potentially very useful

in forestry (Reutebuch, McGaughey et al. 2003).

LiDAR is one of the fastest growing remote sensing technologies with many different

platforms, formats, data products and uses. It is expected that the accuracy of LiDAR

generated topographic products will only increase as its use becomes more widespread.

Functional Requirements

This work was funded by the University of Washington College of Forest Resources

Rural Technology Initiative program. The mission of the Rural Technology Initiative is

to “empower the existing infrastructure to use better technology in rural areas for

managing forests for increased product and environmental values in support of local

communities.” The mission is essentially to identify relevant technologies at the

University level and then translate those technologies into meaningful tools for applied

use in rural communities. Staff at the Rural Technology Initiative suggested that any tool

that was to be used by Washington’s non-industrial forestland owners and forestry

consultants would have to be inexpensive and simple to use in order to be successful as a

tool outside of academia.

It was recognized early in the design process that integrating a road design product into

an existing software package could be beneficial to both the developer and the users.

Utilizing standard functions built into all commercial GIS products as the backbone of a

road design tool would allow the developer to focus on the functionality of the tool itself

and not the creation of the application necessary to support it. For this reason, it was

decided that the tool should be designed as an extension to an existing off-the-shelf GIS

software package. The existing GIS software should be relatively inexpensive and

available across multiple platforms for maximum success.

13

As suggested by Dürrstein (1992), Schiess (1995), and others, forestry tools should be

modular in their design and behave as individual tools in a toolkit so that the experienced

forestry professional can select the appropriate device for their particular needs. From a

functionality standpoint this means that any tool should be able to communicate well with

existing and future tools. Implementing a forest road design tool within a GIS framework

ensures that this condition is met as a GIS is designed as a tool for the import,

manipulation, display, and export of myriad data formats.

With the importance of visualizations in the communication of forest management plans

to the public, it is sensible to enable any new forest road design tool to take advantage of

the existing forest visualization tools that are available. The concept then should be to

locate a road using the GIS based tool, and then virtually construct that road into the

topographic model. The new topographic model can then be visualized in any of the

existing forestry visualization software packages or within the GIS itself.

14

Methods

ArcView

The Environmental Systems Research Institute or ESRI is the largest GIS software

producer in the world and owns more than one-third of the GIS software market (Figure

1) (Thrall and Campins 2004). Since 1996 ESRI’s ArcView® 3 GIS software has been

the most used GIS software in the world with over 500,000 copies sold worldwide. The

popularity of the ArcView software makes it the logical choice for the development of a

route location program.

GIS Software Revenue by Company (2001)

ESRI
34%

Intergraph
13%

GE
7%

Autodesk
7%

Leica
6%

Mapinfo
6%

IBM
5%

SICAD
5%

Logica
3%

Other
14%

Figure 1 - A Daratech study summarized the top nine GIS firms' market share based on worldwide

GIS revenue (software only) in 2001.

15

ArcView GIS provides the avenue programming language to write add-ons and scripts

which can be packaged and installed as extensions. With ArcView it is easy to integrate

custom content into the help system to make a professional product which seamlessly

integrates with ArcView. If a user knows how to use ArcView they will be able to use an

ArcView extension. Another reason to use ArcView and build this as and extension to

ArcView rather than as a stand alone product was to take advantage of the data

management and display functionality that is designed into any GIS. It also allows for the

integration of other tools and datasets inherently. This allowed for more design time to be

spent on ease of use and functionality rather than designing a new piece of software from

scratch.

Pegging

With the growing availability of LIDAR and IFSAR data, locating roads in the office is

becoming a more realistic and practical exercise. Within the GIS framework many tools

exist to locate geographic features, examine spatial relationships among natural elements

and act as a foundation for a decision support system. Watson and Hill (1983) define a

decision support system as an “interactive system that provides the user with easy access

to decision models and data in order to support semi structured and unstructured decision

making tasks.” It is with the intention of providing an initial decision support system that

PEGGER was developed.

PEGGER is an ArcView GIS extension that automates the route projection (“road

pegging”) process for use by engineers and forest planners. One of the goals of the

PEGGER project was to make the program as usable as possible for as many people as

practical. One of the problems with technology is training users to use the software.

Forestry professionals responsible for fieldwork have been slow to adopt new technology

into their work largely due to the complexity of the software and the time commitment of

training. The PEGGER program was designed to avoid these common pitfalls, requiring

16

no training, minimal setup time and a simplified user interface. Included with the

software are detailed help files and a complete tutorial with sample datasets.

PEGGER imports topography as digital contours much like using a paper contour map.

Standard tools available within ArcView GIS allow the user to import the contours from

Shapefiles, ESRI coverages, AutoCAD dwg and dxf, and Microstation dgn files. In

addition to importing data as digital contours, users can use the ArcView Spatial Analyst

extension or other publicly available tools to convert USGS digital elevation models or

LiDAR elevation models to contours. Contours were chosen as the preferred method of

storing topographic surface information primarily because in using a vector based dataset,

the user was not required to have either the ArcView Spatial Analyst or 3D Analyst

Extensions. In addition, every attempt was made to automate the paper-based route

projection process and avoid the perception of a black box technology. By simply

automating a manual routine, it is possible that forest engineers and planners will have

more confidence in their results.

17

Figure 2 - The simple PEGGER user interface in ArcView GIS 3.

Once digital contours have been imported into ArcView the user must supply a few

parameters, the road theme they would like to edit, the contour theme they would like to

use as well as confirm the detected contour interval (Figure 3). In addition to the contour

and road themes the user can have any number of other layers available in the GIS such

as soils, slope classes, streams, wetlands, unstable slopes and property lines. Optionally,

the user can maintain attribute information about the grade of the pegged segment and a

road name.

18

Figure 3 – The simple PEGGER setup dialog where users specify the contour theme, elevation

attribute, contour interval, and attribute preferences.

The next step is to locate the desired beginning and/or endpoints of the new road given

operational parameters. Using standard tools available in the GIS (ruler and identify) the

user can estimate the necessary grade for the road. To start a road the user shift-clicks on

the location where they wish to begin and enters the desired grade. To “peg” the road the

user only has to click in the general direction they wish to go in order to project the route

into the GIS. Successive clicks peg in additional segments of road from contour to

contour as fast as the user can press the mouse buttons. Grade changes can be

accomplished by using the Roads pull-down menu, using the PEGGER toolbar (Figure 4)

or by right clicking the mouse and selecting Increase or Decrease Grade.

Figure 4 - The simple PEGGER toolbar where users can change the grade of the desired road

segments and the name of the road.

If the road fails to reach the desired end point, the previously pegged segments can be

quickly deleted and a new grade can be tried. This method of trial and error that used to

19

mean changing the divider spacing and erasing undesirable segments from the map can

now be accomplished in the GIS in a fraction of the time.

Analytical Description

PEGGER works by identifying contour lines that meet a specific set of criteria (Figure 5).

Every projected route segment must begin and end on a contour line. To project a

segment the user enters a desired grade and PEGGER looks for a point on an adjacent

contour line at a distance computed by:

d = ci / (g / 100)

where d = the distance,

 ci = the contour interval, and

 g = the desired grade.

NOTE: For pegging on paper maps, the distance would need to be multiplied by the map

scale (ie: 1/4800) to get the appropriate divider width.

20

Input/Change
Grade

Detect location
of user mouse

click

Display new
segment on

screen

Calculate “divider”
width

Clear the contour selection
set

Select contours within the divider width
distance from last point

Candidate
contours
selected?

Grade too steep

Select contours 1
interval less than the

current contour

Is the grade
positive or
negative?

Select contours 1
interval more than the

current contour

Create points on the selected
contour 1 divider width from the

current point

Choose the point that is closest to where the user clicked

Create a line from the current point to the new point

Wait for next click

Candidate
contours
selected?

Yes

No

PositiveNegative

No

Yes

Figure 5 - Flow chart of the PEGGER design and decision process for route location on a vector

based contour dataset.

21

If a point is found, a new route segment is created in the GIS (Figure 6). If a point is not

found, the user is notified that the desired grade is not feasible and potential solutions are

proposed. Unlike ROUTES, which allowed for a grade tolerance (+/- some tol),

PEGGER gives an exact solution in the GIS.

Figure 6 - Locating a new route with PEGGER.

After a desirable route location has been found the user can merge the segments into one

long road, dissolve adjacent segments based on a common attribute or spline to smooth

sharp corners (much like a finalized design). An attempt was made to produce tangents

and curves from the initial design but ArcView’s lack of a true curve feature type made

the possibility impractical.

22

Survey

PEGGER is designed as a preliminary route location tool that can inform a more detailed

analysis. Using the ArcView extensions Spatial Analyst or 3D Analyst, users can

digitally survey a preliminary location and export the survey to RoadEng. The survey

technique used by PEGGER closely mimics the methods used by field crews when

surveying a P-line with a Criterion laser range finder. Survey parameters such as the

elevation model to use, the number and density of side-shots, and the distance between

turning-points can be specified in the simple survey dialog shown in Figure 7. An option

to densify the survey and gather additional topography ground points as shown in Figure

8, allows the user to replicate field procedures or maximize topographic input into

RoadEng. This option allows direct comparison between field based and PEGGER digital

surveys for accuracy assessments and research.

Figure 7 - The PEGGER survey dialog where users can specify survey parameters to either match

field procedures for comparison purposes, or maximize topographic input into RoadEng with the

densify function.

23

Figure 8 - The PEGGER survey function allows users to generate survey data for RoadEng so that it

mimics field procedures or so that it maximizes topographic input. Three different survey densities

are shown above with the one of the left most closely representing typical field survey methods.

PEGGER is designed as a tool to quickly evaluate many alternative routes. PEGGER was

not designed to optimize or even suggest optimal route locations. However, it has been

shown that once a route location has been chosen RoadEng can be used to produce an

optimal design (Heralt 2002). RoadEng can produce a final road design that considers

earth work, horizontal alignment, vertical alignment, super-elevation, and materials. By

quickly pegging multiple routes and analyzing them in RoadEng (Figure 9), a preferred

alternative can be selected based on environmental, economic, or visual concerns.

24

Figure 9 - A PEGGER surveyed road in RoadEng. The digital survey can be imported into RoadEng

using the Criterion .pol unit survey format.

Visualization

Complementing PEGGER is a companion program ROADVIEW that takes the

preliminary route location generated by PEGGER and creates an approximate 3-

dimensional model of the road’s cuts, fills and running surface. Using the 3-D model and

a visualization program such as EnVision, professionals can look at the road as it might

be constructed and effectively communicate with non-forest professionals regarding

scenic and environmental impacts. Utilizing the Landscape Management System (LMS)

in combination with EnVision can produce realistic representations of the visual impacts

associated with right-of-way clearing and road construction.

25

Figure 10 - ROADVIEW visualization of a route located with PEGGER.

Analytical Description

ROADVIEW works by constructing 4 surfaces based on the location of an existing or

pegged road. First a grid is constructed that represents the distance from the road

centerline. Second, a road surface grid is constructed from the road using elevation data

from the digital elevation model. Third, both cut and fill grids are created for the entire

length of the road. Using these 4 grids, a cell-by-cell analysis chooses the appropriate

surface based on the order in which those grids overlay. The value of each cell in the

visualization grid can be calculated by the following pseudo-code:

26

Select Case

Case ([DISTANCE TO ROAD] < w)

 [ROAD GRID]

Case ([CUTSLOPE] < [DEM])

 [CUTSLOPE]

Case (FILLSLOPE] > [DEM])

 [FILLSLOPE]

Else

 [DEM]

End Select

where w = road width,

 [####] = a grid

Currently, ROADVIEW does not adjust the road location or vertical alignment to balance

cuts and fills or construct a full-bench segment. ROADVIEW simply visualizes the road

as if it were built exactly as represented in the GIS. While the method is fairly crude, it

quickly gives the user an idea of how a particular road will look when constructed. Any

future work on ROADVIEW should attempt to visualize roads based on templates for

balanced cut/fill and full-bench sections in different side-slope conditions.

27

Discussion

Ease of Use

To ensure the software was intuitive a usability test was conducted. All users had some

familiarity with ArcView 3 GIS. Users were asked to download and install the PEGGER

ArcView extension and then follow the included tutorial to learn how to use the software.

Monitoring of the users behavior and suggestions made directly by the users resulted in a

streamlined and improved design. Since PEGGER’s introduction in 2001 many

comments have been received from users. Most have commented on the programs ease of

installation, well documented tutorial, and simple user interface (personal communication

with Dudek 2004; personal communication with Khan 2004; personal communication

with Romberg 2005).

There were two main issues identified from users. First, they were looking for the

installed program under the Microsoft Windows start menu even though ArcView

extensions are not accessed that way. In order to address this behavior there was a

program folder set up to appear in the start menu for easy access to the program after

installation. Second, the help documentation did not include information for PEGGER

because the ArcView help was separate so the PEGGER help documentation was

integrated with the ArcView help documentations files. These simple changes to the

installation and user interface have made the program much more intuitive and user-

friendly.

Proliferation of Software

Downloads

Since PEGGER was first published as an ArcGIS extension in 2001 many users from all

over the globe have downloaded and successfully used it. As of April 2005 there have

28

been over 670 downloads of the software from the Rural Technology Initiative website at

http://www.ruraltech.org/tools/pegger.

PEGGER Downloads

0

50

100

150

200

250

300

2002 2003 2004 2005

Windows
UNIX

Figure 11 - Downloads of the PEGGER software from the Rural Technology Initiative Website from

2002 to 2004 with projected downloads for 2005.

Applications to Management

Pegging roads in the office before heading to the field can save considerable time. In has

been shown that by using PEGGER, feasible preliminary routes can be identified for

larger areas in less time than was possible using manual methods alone. In addition to

analyzing more alternative routes in less time PEGGER was extended by analyzing side

slope data as roads were pegged. By using slope information from a digital elevation

model and the distance to the nearest rock-pit, a rough cost estimate could be calculated

for each alternative road design (Schiess and Tryall 2002; Schiess and Tryall 2003).

http://www.ruraltech.org/tools/pegger

29

Another application of PEGGER is the ability to create field maps once a route has been

chosen. PEGGER keeps track of grade information as a road is pegged. Using the

dissolve feature of PEGGER along with the grade information, adjacent segments of

pegged road can be dissolved together to create lengths of road that have the same grade.

Pegged roads can then be printed on a contour map with grade and length information as

shown in Figure 12.

Figure 12 - A dirty and well-used field map produced from a road designed using PEGGER. The

road grade and stationing information can be used to locate the proposed road in the field with just

the map and a clinometer.

The advantage of using maps like the one above are that the only tool needed to locate

the PEGGER designed road is a clinometer. Reading the grade and distances off of the

map, roads can be flagged in by simply starting at a known point and pacing the required

distance at the indicated grade. Placing flagging along the way, a single person can locate

many miles of road in a single day. This method has been used by the University of

30

Washington Forest Engineering Capstone students very successfully over the past few

years and is considered to be their preferred method for forest road grade-line location.

Limitations

The PEGGER program relies on digital topographic information to identify potential road

locations. To be of value to the forest professional, the topographic information must

accurately represent the actual ground conditions. Steve Reutebuch (1988) noted about

ROUTES that “the accuracy of the 30-meter (USGS) DEM’s available at the time were

insufficient for accurate route projection.” With the availability of 10-meter digital

elevation data and the current popularity of LIDAR data, route projection has become

more feasible but discrepancy between the data and actual field conditions should be

expected.

The PEGGER program is a tool for quickly identifying possible route location

alternatives given grades specified by the user. The tool does not evaluate additional

environmental and economic constraints that must be considered by the forest

professional such as soil types, hydrology, property lines and slope classes. The GIS

provides a framework where these analyses can be implemented but it is outside the

scope of the PEGGER program.

The algorithm that PEGGER uses to identify a segment is dependant on the contour

interval of the dataset, and the desired grade of the road. At steeper grades, this works

very well as pegged segments are short. However, as the grade of interest decreases, as

shown in Figure 13, PEGGER must make the pegged segments longer and longer. At a

1% grade on a 20 foot contour interval dataset, the segment length becomes 2000 feet. At

such long segment lengths, the topography is not being accurately represented. Therefore,

at shallow grades, it is necessary for the engineer to use standard GIS functionality to

31

locate roads manually and only rely on pegged segments as a guide for freehand

placement of a preliminary route location.

Pegged Segment Length as a Function of Grade

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Grade

Se
gm

en
t L

en
gt

h

Figure 13 - At shallow grades, PEGGER creates very long segments of road which may not represent

the topography properly.

Users must also be careful crossing incised stream valleys (or draws) when using

PEGGER. Figure 14 demonstrates the problems than can be encountered when using

PEGGER in steep mountainous terrain where incised stream valleys are common. The

straight red segments were placed using PEGGER with a -5% grade. These segments,

because of the long segment length, skip over the topography of the incised stream. At

the highest point, the road is over 100 feet above the stream! In reality, this road would

be built more like the curvy green segments that more closely follow the topography of

the stream valleys. The road that was initially pegged at -5% grade when built would

come out to something more like -3.7%. This difference in grade can be considerable

depending on site specific conditions. While it may be appropriate in this situation for a

more relaxed grade through the turns, if the grade were critical it would be important to

look out for these circumstances.

32

Figure 14 - Care must be taken when pegging across stream valleys. Here, the red road was located

using PEGGER, however, the road would likely be constructed more like the green road. This

difference in road length can significantly affect the grade of the road.

33

Conclusions
While computerized route location has been used by forest professionals for many years,

it has never become a widely used technology to evaluate initial road locations. With

PEGGER, the forest planner can quickly evaluate route locations within a GIS

framework, giving the planner access to additional GIS functionality. PEGGER was

designed with simplicity and minimal investment cost as primary objectives. Through the

use of a carefully designed user interface and extensive tutorial, a typical user can be

locating roads in a few minutes on their own PC taking full advantage of forest

technology. The automation, rather than optimization, of route location gives the forest

planner more confidence in their designs since it incorporates their knowledge in the

process.

In the past few years, this tool has been used by hundreds of forestry professionals from

all over the world. As shown by the number of downloads of the product, and the

responses received from users, PEGGER is another valuable tool that forest planners can

add to their toolbox.

34

Bibliography
(1985). FORPLAN version 1. Washington, D.C., U.S. Dept. of Agriculture, Forest

Service, Land Management Planning Systems Section.

Akay, A. E., I. R. Karas, et al. (2004). Using High-Resolution Digital Elevation Model
for Computer-Aided Forest Road Design. Geo-Imagery Bridging Continents,
Istanbul, Turkey, The International Society for Photogrammetry and Remote
Sensing.

Anderson, A. E. and J. Nelson (2004). "Projecting vector-based road networks with a
shortest path algorithm." Canadian Journal of Forest Research 34(7): 1444-1457.

Becker, G. and D. Jaeger (1992). Integrated design, planning and evaluation of forest
roads and logging activities using GIS-based interactive CAD-systems. Computer
Supported Planning of Roads and Harvesting Workshop, Feldafing, Germany,
International Union of Forestry Research Organizations.

Berry, J. K., D. J. Buckley, et al. (1998). Visualize Realistic Landscapes: 3-D Modeling
Helps GIS Users Envision Natural Resources. GeoWorld.

Boyland, M. (2003). Hierarchical Planning in Forestry. Vancouver, B.C., University of
British Columbia, Canada: 7.

Burke, D. (1974). Automated analysis of timber access road alternatives. Pacific. U. P. N.
F. a. R. E. Station, USDA Forest Service. GTR-PNW-27: 1-40.

Carson, W. W. and S. E. Reutebuch (1997). A Rigorous Test of the Accuracy of USGS
Digital Elevation Models in Forested Areas of Oregon and Washington. 1997
ACSM/ASPRS Annual Convention & Exposition, Seattle, Washington, American
Congress of Surveying and Mapping (ACSM); American Society for
Photogrammetry & Remote Sensing (ASPRS).

Cha, D. S., H. Nako, et al. (1991). "A Computerized Arrangement of Forest Roads Using
a Digital Terrain Model." Journal of the Faculty of Agriculture 36(1-2): 131-142.

Coulter, E. D., W. Chung, et al. (2001). Forest road earthwork calculations for linear road
segments using a high resolution digital terrain model generated from LIDAR
data. First Precision Forestry Symposium, University of Washington, College of
Forest Resources, Seattle, Washington.

35

Dudek, S. (2004). Personal communication with Sebastian Dudek a Resource
Information Systems Analyst with Rayonier. Hoquiam, WA.

Dürrstein, H. (1992). Detailed Road Planning Using Microcomputers. Computer
Supported Planning of Roads and Harvesting Workshop, Feldafing, Germany,
International Union of Forestry Research Organizations.

Dvorscák, P. and M. Hríb (1992). Development and Present State of Utilizing Computing
Technique in Projecting of Forest Roads in Slovakia. Computer Supported
Planning of Roads and Harvesting Workshop, Feldafing, Germany, International
Union of Forestry Research Organizations.

Epstein, R., J. Sessions, et al. (2001). PLANEX: A System to Identify Landing Locations
and Access. 11th International Mountain Logging and Pacific Northwest Skyline
Symposium, Seattle, Washington, USA, University of Washington.

Heralt, L. (2002). "Using ROADENG system to design an optimum forest road variant
aimed at the minimization of negative impacts on the natural environment."
Journal of Forest Science 48(8): 361-365.

Kent, B., B. B. Bare, et al. (1991). "Natural Resource Land Management Planning using
Large-Scale Linear Programs: The USDA Forest Service Experience with
Forplan." Operations Research 39(1): 13-27.

Khan, B. (2004). Personal communication with Babar Khan, Geomatics Engineering
Department, Regional Power Inc. Toronto, Ontario, Canada.

Kobayashi, H. (1973). A Study on Automatic Processing in Forest Road Design Mainly
Concerning the Earthwork, Government Forest Experimental Station. Tokyo,
Japan. 249.

Krogstad, F. and P. Schiess (2004). The Allure and Pitfalls of Using LiDAR topography
in Harvest and Road Design. Joint Conference of IUFRO 3.06 Forest Operations
in Mountainous Conditions and the 12th International Mountain Logging
Conference, Vancouver, B.C., Canada.

McCarter, J. B. (2001). Landscape management system (LMS): background, methods,
and computer tools for integrating forest inventory, GIS, growth and yield,
visualization and analysis for sustaining multiple forest objectives. College of
Forest Resources. Seattle, WA, University of Washington. Doctor of Philosophy.

36

McGaughey, R. J. (2000). EnVision - Environmental Visualization System. Seattle, WA,
USDA Forest Service, Pacific Northwest Research Station: EnVision is designed
to be a full featured rendering system for stand- and landscape-scale images.

McGaughey, R. J. and R. H. Twito (1988). VISUAL and SLOPE: Perspective and
quantitative representation of digital terrain models. USDA, USDA Forest
Service. PNW-GTR-214: 1-26.

Pearce, J. K. (1960). Forest Engineering Handbook. B. o. L. M. United State Department
of the Interior: 220.

Pereira, L. and L. Janssen (1999). "Suitability of laser data for DTM generation: a case
study in the context of road planning and design." ISPRS Journal of
Photogrammetry and Remote Sensing 54(4): 244-253.

Reisinger, T. W. and C. J. Davis (1985). A Map-Based Decision Support System for
Operational Planning of Timber Harvests. Winter Meeting of the American
Society of Agricultural Engineers, Chicago, Il, American Society of Agricultural
Engineers.

Reutebuch, S. (1988). ROUTES: A Computer Program for Preliminary Route Location.
U. D. o. A. Pacific Northwest Research Station, Forest Service. PNW-GTR-216:
18.

Reutebuch, S., R. J. McGaughey, et al. (2003). "Accuracy of a high-resolution digital
terrain model under a conifer forest canpoy." Canadian Journal of Remote
Sensing 29(5): 527-535.

Romberg, W. (2005). Personal communication with Wes Romberg, a Forester at Pacific
Forest Management, Inc. Port Hadlock, WA.

Schiess, P. and A. Arntzen (2001). Assessment of Operational Feasibilities for
Implementing the OESF Conservation Strategy. Seattle, WA, University of
Washington.

Schiess, P. and L. M. O'Brien (1995). The Application of Geographic Information
Systems to Forest Operations: The Integration of Cable Setting Design into GIS.
2nd Brazilian Symposium on Timber Harvesting and Forest Transportation,
Salvador, Bahia, Brazil.

37

Schiess, P. and L. W. Rogers (1999). A Watershed and Transportation Plan for the North
Hoodsport Planning Area. Seattle, WA, University of Washington.

Schiess, P. and L. W. Rogers (2000). A Thinning and Access Strategy for Accelerated
Stand Habitat Creation - Burnt Mountain. Seattle, WA, University of Washington.

Schiess, P. and J. Tryall (2002). Transportation & Road Management Requirements to
Facilitate Habitat Restoration in the Tyee South Planning Area. Seattle, WA,
University of Washington: 106.

Schiess, P. and J. Tryall (2003). Developing a Road System Strategy for the Tahoma
State Forest. Seattle, WA, University of Washington.

Sedjo, R. A. (1987). FORPLAN, an evaluation of a forest planning tool: proceedings of a
symposium, November 4-6, 1986, Denver, Colorado / Thomas W. Hoekstra, A.A.
Dyer, Dennis C. Le Master, technical editors. Fort Collins, Colo., U.S. Dept. of
Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment
Station.

Sessions, J. (1987). A Heuristic Algorithym for the Solution of the Variable and Fixed
Cost Transportation Problem. The 1985 Symposium of System Analysis in Forest
Resources, University of Georgia, Athens.

Sessions, J. and J. B. Sessions (1988). SNAP - A Scheduling and Network Analysis
Program for Tactical Harvest Planning. International Mountain Logging and
Pacific Northwest Skyline Symposium.

Sessions, J. and J. B. Sessions (1992). Tactical Harvest Planning Using SNAP 2.03.
Computer Supported Planning of Roads and Harvesting Workshop, Feldafing,
Germany, International Union of Forestry Research Organizations.

Thompson, M. (1988). "Optimizing spur road spacing on the basis of profit potential."
Forest Products Journal 38(5): 53-57.

Thrall, G. I. and M. Campins (2004). Mapping the Geospatial Community. Geospatial
Solutions. 14: 46-52.

Watson, H. J. and M. M. Hill. (1983). "Decision support systems or what didn’t happen
with MIS." Interface 13(5): 81-88.

38

Xu, S. (1996). Preliminary planning of forest roads using ARC GRID. Department of
Forest Engineering. Corvallis, OR, Oregon State University: 112.

39

Appendix A – PEGGER Software Manual

About this Tutorial

This tutorial is designed to help new users install and run PEGGER in ArcView 3 GIS.

While PEGGER will work on all ArcView 3 platforms, this tutorial was written

specifically for Microsoft Windows. Users of other platforms will still find this tutorial

valuable, but will have to make the appropriate translations when necessary.

Installing PEGGER

PEGGER can be downloaded from the Rural Technology Initiative website at

http://www.ruraltech.org/tools/pegger. Download the setup.exe file or run it directly from

the web to start the installation. On the first page of the setup program, select Next to

continue.

http://www.ruraltech.org/tools/pegger

40

Read the terms of the license agreement and select ‘I accept the agreement’ if you wish to

install the software. Select Next to continue.

41

Select a location for Pegger to be installed. Most of the files that Pegger installs will be in

the ArcView installation directory so less than 1 MB of files will be placed in the

installation directory chosen here. Accept the default location and select Next to continue.

42

All installations will include the Pegger ArcView extension and the integrated help files.

If you do not wish to install the tutorial, select Minimal. The Compact installation

includes the Pegger tutorial with only the three shapefile datasets for those who do not

have Spatial or 3D Analyst. The Full installation includes the Pegger tutorial and all the

tutorial datasets: three shapefiles, a GRID elevation model, and a TIN for those who have

Spatial or 3D analyst and wish to use the Survey P-Line function with RoadEng.

43

Select a folder to place the program shortcuts in the start menu. Either the default location

or the ESRI\ArcView GIS 3.x folder work well.

44

Review the installation settings and select Install to complete the installation.

45

A completion screen will appear if you have installed Pegger successfully.

46

You should now have a new item under your start menu called Pegger with shortcuts to

the Pegger Tutorial, the Pegger Help file and the un-installation program depending on

which installation components were selected.

Uninstalling Pegger

To uninstall Pegger, use either the Uninstall Pegger function in the PEGGER folder under

the Start menu or use Add/Remove Programs in the Control Panel. Select Yes when

prompted to remove the software.

47

Finding Help

Installed with Pegger are a complete set of help files that are integrated into the ArcView

help system. In addition, a shortcut to the Pegger help can be found in the PEGGER

folder under the Start menu. A good place to start learning about Pegger is in the table of

contents under Extensions > Pegger > Getting Started.

All of the tools, dialogs and menus that are part of the Pegger extension have context

based help that can be viewed in the status bar at the bottom of the ArcView application

window. In addition using the View Help tool: and clicking on any Pegger control

will bring up the appropriate page in Pegger Help.

Using Tutorial.apr

Included with the Full or Compact Pegger installation are a tutorial.apr project file,

pegger_trans.shp, pegger_cont.shp and pegger_hydro.shp shapefiles. If you have

ArcView Spatial Analyst or 3D Analyst and chose the Full installation option, then you

may also have a pegger_dem GRID and a pegger_tin TIN.

The tutorial project file opens with the three shapefiles already symbolized and added to a

view. If you have Spatial Analyst or 3D Analyst you can also add the DEM or TIN to the

view. First, enable the Spatial Analyst or 3D Analyst Extension by selecting Extensions

under the File menu and selecting 3D or Spatial Analyst.

48

Then, using the Add Theme Button: browse to the AVTUTOR\PEGGER directory,

select Grid Data Source or Tin Data Source for the Data Source Type, and select

pegger_dem or pegger_tin.

49

Activating the Extension

To Activate the Pegger extension you must select it in the Extensions dialog box. To

open the Extensions dialog box, select Extensions under the File menu. Select Pegger and

any other extensions you wish to use and OK the Extensions dialog box. If you wan

Pegger to be available each time you open ArcView, select pegger and then check the

Make Default box on the right.

The road theme

Grade attribute

Pegger can keep track of grade information as roads are pegged. In order for Pegger to

keep track of grade information there must be a numeric field in the attribute table that

can store the grade information. If you want to keep track of grade information as you

peg, check to make sure an attribute already exists that will work, or add a new attribute

to the table.

50

Open the attribute table for the road theme by making the road theme the active theme

(select it in the view legend), and selecting Theme > Table or by using the Open Theme

Table button:

Look at the fields in the table to determine if there is an appropriate field for storing

grade information. In this case, the Grade field looks like it will work, but it is always

good to check to make sure it is a numeric field. Select the Grade field and look under the

Field menu. If the statistics menu item is not grayed out, then it is a numeric field (it will

be grayed out if it is a text field).

If you want to add a new field to the table to store grade information, you will need to

start editing the table, and then add a new field of type number. If you would like more

information, lookup “editing a table” in the ArcView help file index.

51

Name attribute

In addition to storing grade information as roads are being pegged, road name

information can also be saved. In order for Pegger to keep track of road name information

there must be a text (a.k.a. string) field in the attribute table that can store the road name

information. If you want to keep track of road name information as you peg, check to

make sure an attribute already exists that will work, or add a new attribute to the table.

Open the attribute table for the road theme by making the road theme the active theme

and selecting Theme > Table or by using the Open Them Table button:

Look at the fields in the table to determine if there is an appropriate field for storing road

name information. In this case, the Road_id field looks like it will work, but it is always

good to check to make sure it is a text field. Select the Road_id field and look under the

Field menu. If the statistics menu item is grayed out then it is a text field.

52

If you want to add a new field to the table to store road name information, you will need

to start editing the table, and then add a new field of type string. If you would like more

information, lookup “editing a table” in the ArcView help file index.

The contour theme

Elevation attribute

Pegger uses a contour theme as a representation of the ground surface. While this could

have been done on a raster dataset or on a Tin, both of those options would have required

access to either the Spatial or 3D Analyst Extension. To make the program as simple and

inexpensive to use as possible, contours are used.

In order to use a contour theme with Pegger, an numeric attribute in the contour theme

must store the elevation values of the contours. Check to make sure that the contour

53

theme has a numeric elevation value field by opening the table and looking at the themes

attributes.

If the contour theme attribute table does have an elevation field but the values are stored

as strings rather than numbers, they will need to be converted before being used with

Pegger. For more information, lookup “elevation data” in the ArcView help file index.

To be continued….

54

Appendix B – PEGGER Avenue™ Code

55

The following ArcView 3 Avenue code comprises only the parts of PEGGER that deal

with route projection, surveying, and other critical aspects of the program. Much of the

code behind PEGGER is not directly related to the pegging task and is not included here.

' Pegger.PeggingTool.Apply
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98115
'
' luke@nwgeospatial.com
'
' October 17th, 2000
'
' Description: respond to user click and initiate pegging process
'
' Calls: Pegger.PeggingTool.StartRoad(theView,theTheme,thePoint)
' Pegger.PeggingTool.Peg(thePoint,theLastPoint)
'
' Returns: nothing
'
'***
theView = av.GetActiveDoc
theTheme = theView.GetEditableTheme
av.ClearMsg
theDict = theTheme.GetObjectTag
theLastPoint = theDict.Get("LastPoint")

If ((System.IsShiftKeyDown) or (theLastPoint = nil)) then
 shiftDown = TRUE
else
 shiftDown = FALSE
end

' Get the point off the display when user clicks
thePoint = theView.GetDisplay.ReturnUserPoint

' If the point they selected is outside of the extent of
' the contour theme then return a warning
theDict = theTheme.GetObjectTag
theContTheme = theDict.Get("ContTheme")
theExtentRect = theContTheme.ReturnExtent
if (theExtentRect.Contains(thePoint).Not) then
 MsgBox.Warning("You cannot peg in a road where no contours exist",
 "PeggingTool.Apply")
 return nil
end

56

'***
' If the shift key is down then it is a new road
if (shiftDown = TRUE) then
 av.ShowMsg("Starting new road at:"++thePoint.AsString)
 theStartRoadStatus = av.Run("Pegger.PeggingTool.StartRoad",
 {theView, theTheme, thePoint})
 return nil
else
 ' Figure out which point to go to
 theGoToPoint = av.Run("Pegger.PeggingTool.Peg",
 {thePoint, theLastPoint})
end
'***
' If there is no goto point then exit and error
if (theGoToPoint = Nil) then
 return nil
else
 theDict.Set("LastPoint", theGoToPoint)
 theTheme.SetObjectTag(theDict)
end
'***
' Make the line
theGradeLine = PolyLine.Make({{theLastPoint, theGoToPoint}})

' Add the line to the table
if (theTheme <> nil) then
 theFTab = theTheme.GetFTab
 theShapeField = theFTab.FindField("Shape")
 theFTab.BeginTransaction
 rec = theFTab.AddRecord
 theFTab.SetValue(theShapeField, rec, theGradeLine)
 ' Add the grade if setup to do so
 attributeGrades = theDict.Get("AttributeGrades")
 if (attributeGrades) then
 theGrade = theDict.Get("Grade")
 theGradeField = theDict.Get("GradeField")
 theFTab.SetValue(theGradeField, rec, theGrade)
 end
 ' Add the name if setup to do so
 attributeName = theDict.Get("AttributeName")
 if (attributeName) then
 theName = theDict.Get("Name")
 theNameField = theDict.Get("NameField")
 theFTab.SetValue(theNameField, rec, theName)
 end
 theTheme.GetFTab.EndTransaction
 theTheme.GetFTab.GetSelection.ClearAll
 theTheme.GetFTab.GetSelection.Set(rec)
 theTheme.GetFTab.UpdateSelection
end

av.GetProject.SetModified(true)
return nil

57

' Pegger.PeggingTool.StartRoad
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98195
'
' lwrogers@u.washington.edu
'
' October 17th, 2000
'
' Description: Start a new pegging segment
'
' Calls: nothing
'
' Returns: set object tag for the point that was just
' clicked so that a new road can be started
'
'***
'MsgBox.Info("Starting new road", "PeggingTool.StartRoad")
theView = SELF.Get(0)
theTheme = SELF.Get(1)
thePoint = SELF.Get(2)
theDict = theTheme.GetObjectTag
theContTheme = theDict.Get("ContTheme")
theElevItem = theDict.Get("ElevItem")
theGrade = theDict.Get("Grade")
theInterval = theDict.Get("ContInterval")
theCurrentElev = theDict.Get("CurrentElev")
theVTab = theContTheme.GetFTab
theShapeField = theVTab.FindField("Shape")
theElevField = theVTab.FindField(theElevItem.AsString)
'***
' If we are on a contour then get the elevation from the contour,
' otherwise we will have to use the method below of making polygons

' Clear the selection
theContTheme.ClearSelection
theVTab.UpdateSelection

' Try to select a contour by using the point the user just clicked
if (theContTheme.CanSelect) then
 theContTheme.SelectByPoint(thePoint, #VTAB_SELTYPE_NEW)
end

' See if there is a selection (should only be one if any)
if (theVTab.GetSelection.Count = 1) then
 theSelection = theVTab.GetSelection.GetNextSet(-1)
 theCurrentElevation = theVTab.ReturnValue(theElevField,theSelection)

58

 ' Clear the selection
 theContTheme.ClearSelection
 theVTab.UpdateSelection

 ' Lets see if we can snap to the contour for extra precision
 if (thePoint.Snap(theVTab.ReturnValue(theVTab.FindField("Shape"),
 theSelection), 10)) then
 av.ShowMsg("Snapped to the Contour")
 else
 av.ShowMsg("Failed to snap to Contour, location approximate")
 end

 ' Update the CurrentElev item in the dictionary and set the object
 ' tag on the theme
 theDict.Set("CurrentElev", theCurrentElevation)
 theDict.Set("LastPoint", thePoint)
 theTheme.SetObjectTag(theDict)
 av.GetProject.SetModified(true)

 ' We found the elevation so we are done
 'MsgBox.Info("Found elevation using point"+NL+
 '"Elev:"++theCurrentElev.AsString, "PeggingTool.StartRoad")
 return "POINT"
end

if (theVTab.GetSelection.Count = 0) then
 MsgBox.Info("Must be on a contour before you can peg in a grade.",
 "PeggingTool.StartRoad")
 return "ZERO"
elseif (theVTab.GetSelection.Count > 1) then
 MsgBox.Info("More than one contour selected."+NL+
 "Zoom in to eliminate ambiguous selection", "PeggingTool.StartRoad")
 return "ZERO"
end

MsgBox.Error("Start Road Instance Not Handled",
"PeggingTool.StartRoad")
return nil

59

' Pegger.PeggingTool.Peg
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98195
'
' lwrogers@u.washington.edu
'
' October 17th, 2000
'
' Description: Given the coordinates of the users click and
' the last point this module will return a new
' point on grade in the direction of the click
'
' Calls: nothing
'
' Returns: theGoToPoint (new point on grade)
'
'***
thePoint = SELF.Get(0)
theLastPoint = SELF.Get(1)
theView = av.GetActiveDoc
theTheme = theView.GetEditableTheme
theDict = theTheme.GetObjectTag
theContTheme = theDict.Get("ContTheme")
theElevItem = theDict.Get("ElevItem")
theGrade = theDict.Get("Grade")
theInterval = theDict.Get("ContInterval")
theCurrentElev = theDict.Get("CurrentElev")
theContFTab = theContTheme.GetFTab
theShapeField = theContFTab.FindField("Shape")
theElevField = theContFTab.FindField(theElevItem.AsString)

'***

' Make the grade circle
' if the grade is 0 then use a 10% grade circle for segment length
if (theGrade = 0) then
 theRadius = theInterval / (10 / 100)
else
 theRadius = theInterval / (theGrade / 100)
end

' If the radius is less than the snap tolerance then no segment
' will be made so send a warning
if ((theTheme.IsSnapping) or (theTheme.IsInteractiveSnapping)) then
 if ((theTheme.GetSnapTolerance > theRadius.abs) or
 (theTheme.GetInteractiveSnapTolerance > theRadius.abs)) then
 MsgBox.Warning("At least one Snap tolerance is greater than "+

60

 " the current"+NL+"segment, a line may not be "+
 "added to the theme until its"+NL+"length is "+
 "greater than the current snap tolerance."+NL+
 "The current segment length is:"++
 theRadius.AsString, "PeggingTool.Peg")
 end
end

theCircle = Circle.Make(theLastPoint, theRadius.Abs)

if (theCircle.IsNull) then
 return nil
end

' Clear the current contour selection
theContTheme.GetFTab.GetSelection.ClearAll

' Get the contour themes vtab bitmap
theBitmap = theContFTab.GetSelection
'***
' Select the contour to intersect the grade circle with
' first select using the grade circle
theContFTab.SelectByShapes ({theCircle}, #VTAB_SELTYPE_NEW)

if (theContFTab.GetSelection.Count = 0) then
 MsgBox.Warning("A"++theGrade.AsString+"% grade is too steep."+NL+
 "Lessen the grade to continue pegging", "PeggingTool.Peg")
 return nil
end

' Now select using elevation attribute
if (theCurrentElev <> nil) then
 ' build the query string for the contours on either side
 if (theGrade > 0) then
 theNextContour = theCurrentElev + theInterval
 elseif (theGrade < 0) then
 theNextContour = theCurrentElev - theInterval
 elseif (theGrade = 0) then
 theNextContour = theCurrentElev
 end
 theQuery = "(["+theElevItem.AsString+"] ="++
 theNextContour.AsString++")"

 theBitmap = theContFTab.GetSelection
 theContFTab.Query(theQuery, theBitmap, #VTAB_SELTYPE_AND)
 theContFTab.UpdateSelection
 if (theContFTab.GetSelection.Count = 0) then
 MsgBox.Warning("A"++theGrade.AsString+"% grade may be too "+
 "steep."+NL+"Lessen the grade to continue "+
 "pegging", "PeggingTool.Peg")
 return nil
 end
else

61

 MsgBox.Error("The current elevation is null", "PeggingTool.Peg")
 return nil
end
'***
' Select the proper point to go to
' Intersect the circle with the contour
' Make a list to hold the points
thePointList = List.Make

for each theSelection in theContFTab.GetSelection
 theContShape = theContFTab.ReturnValue(theShapeField, theSelection)
 theMultiPoint = theContShape.PointIntersection(theCircle)
 thePointList.Merge(theMultiPoint.AsList)
end

' Get the one closest to where we want to go
theDistance = 9999999
for each pnt in thePointList
 if (thePoint.Distance(pnt) < theDistance) then
 theDistance = thePoint.Distance(pnt)
 theGoToPoint = pnt
 end
end
'***
' Set the elevation for the next contour
theDict.Set("CurrentElev", theNextContour)
theTheme.SetObjectTag(theDict)

theView.GetDisplay.Flush
theView.GetGraphics.Empty

av.GetProject.SetModified(true)

return theGoToPoint

62

' Pegger.RoadMenu.Dissolve
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98195-2100
'
' lwrogers@u.washington.edu
'
' December 11th, 2004
'
' Description: Dissolve roads based on grade or any other item.
'
' Calls: nothing
'
' Returns: merges adjacent features together based on a common
' attribute
'
'***
' Table summary to merge shapes
'Get the theme
theView = av.GetActiveDoc
theTheme = theView.GetActiveThemes.Get(0)
if (theTheme = nil) then
 MsgBox.Warning("Can only dissolve grades on the first active theme"
 , "RoadMenu.Dissolve")
 return nil
end
if (theTheme.GetFTab.GetShapeClass.GetClassName <> "PolyLine") then
 MsgBox.Warning("Can only dissolve grades on PolyLine features.",
 "RoadMenu.Dissolve")
 Return nil
end

theFTab = theTheme.GetFTab
'***
'Get the fields
theFieldList = theTheme.GetFTab.GetFields
theValidFields = List.Make
for each theField in theFieldList
 if ((theField.IsTypeNumber) or (theField.IsTypeString)) then
 theValidFields.Add(theField)
 end
end
'***
'Get the dissolve field
theDissolveField = MsgBox.List(theValidFields, "Select the field to "+
 "dissolve on:", "Select Dissolve Attribute")

if (theDissolveField = nil) then

63

 return nil
end
'***
'Get the summary fields
theOtherFields = theValidFields.DeepClone
theDissolveFieldIndex = theValidFields.FindByValue(theDissolveField)
theOtherFields.Remove(theDissolveFieldIndex)

theSummaryList = List.Make
NumTypes = {"by Average","by Sum","by Minimum Value",
 "by Maximum Value",
 "by Standard Deviation","by Variance"}
StrTypes = {"by First","by Last", "by Count"}
for each theField in theOtherFields
 if (theField.IsTypeNumber) then
 for each type in NumTypes
 theSummaryList.Add((theField.AsString++type))
 end
 elseif (theField.IsTypeString) then
 for each type in StrTypes
 theSummaryList.Add((theField.AsString++type))
 end
 end
end

theListToSummarize = MsgBox.MultiListAsString(theSummaryList,
 "Select additional summary fields if desired:",
 "Select Dissolve Summaries")
if (theListToSummarize = nil) then
 return nil
end
'***
'Parse the chosen summary fields
theSummaryFieldList = List.Make
theSummaryTypes = List.Make

for each theKey in theListToSummarize
 theTokens = theKey.AsTokens(" ")
 theField = theFTab.FindField(theTokens.Get(0))
 theSummaryFieldList.Add(theField)
 theValue = theTokens.Get(2)
 if (theValue="Sum") then
 theSummary = #VTAB_SUMMARY_SUM
 elseif (theValue="Average") then
 theSummary = #VTAB_SUMMARY_AVG
 elseif (theValue="Minimum") then
 theSummary = #VTAB_SUMMARY_MIN
 elseif (theValue="Maximum") then
 theSummary = #VTAB_SUMMARY_MAX
 elseif (theValue="Standard") then
 theSummary = #VTAB_SUMMARY_STDEV
 elseif (theValue="Variance") then
 theSummary = #VTAB_SUMMARY_VAR

64

 elseif (theValue="First") then
 theSummary = #VTAB_SUMMARY_FIRST
 elseif (theValue="Last") then
 theSummary = #VTAB_SUMMARY_LAST
 elseif (theValue="Count") then
 theSummary = #VTAB_SUMMARY_COUNT
 end
 theSummaryTypes.Add(theSummary)
end
'***
'Add the shape field to the summary
theShapeField = theFTab.FindField("Shape")
theSummaryFieldList.Add(theShapeField)
theSummaryTypes.Add(#VTAB_SUMMARY_AVG)
'***
'Select location to store new shapefile
theNewShapefile = FileDialog.Put("Dissolve".AsFileName, "*.shp",
 "Save dissolve shapefile as...")
if (theNewShapefile = nil) then
 return nil
end
'***
'Run the dissolve
dissolveFTab = theFTab.Summarize(theNewShapefile, Shape,
 theDissolveField, theSummaryFieldList, theSummaryTypes)
'***
' Explode multi-part shapes into single-part
theShapeField = dissolveFTab.FindField("Shape")

'Start editing the FTab
dissolveFTab.StartEditingWithRecovery

' Get every selected record after another
For Each record In dissolveFTab
 theLine = dissolveFTab.ReturnValue(theShapeField, record)
 theLine = theLine.ReturnConnected

 ' If the selected feature contains more than one part, explode it
 If (theLine.CountParts > 1) Then
 theLines = theLine.Explode

 ' Take every children...
 For Each aLine In theLines
 newRecord = dissolveFTab.AddRecord
 dissolveFTab.SetValue(theShapeField, newRecord, aLine)

 ' ...and give it the attributes of its ancestor
 For Each aField In dissolveFTab.GetFields
 If (aField.AsString <> "Shape") Then
 dissolveFTab.SetValue(aField, newRecord,
 dissolveFTab.ReturnValue(aField, record))
 End
 End

65

 End

 ' Remove the ancestor
 dissolveFTab.RemoveRecord(record)
 End
End

'Stop editing the FTab
dissolveFTab.StopEditingWithRecovery(TRUE)

dissolveFTab.CreateIndex(theShapeField)
theView.AddTheme(FTheme.Make(dissolveFTab))

return nil

66

' RoadMenu.MergePolyLines
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98115
'
' luke@nwgeospatial.com
'
' October 17th, 2000
'
' Description: Merge selected features into single feature
'
' Calls: nothing
'
' Returns: nothing
'
'***
theView = av.GetActiveDoc
theTheme = theView.GetEditableTheme
theFTab = theTheme.GetFTab
if (theFTab.GetSelection.Count = 0) then
 MsgBox.Info("No polylines selected.", "RoadMenu.MergePolyLines")
 return nil
end
if(theFTab.GetShapeClass.GetClassName <> "PolyLine") then
 MsgBox.Warning("We can only spline PolyLine features.","")
 return nil
end
'***
' Make the list to hold the points
theList = List.Make

' Beging transaction so we can undo
theFTab.BeginTransaction

For Each selrec in theFTab.GetSelection
 thePolyLine = theFTab.ReturnValue(theFTab.FindField("Shape"),selrec)
 thePoints = thePolyLine.AsList
 for each pnt in thePoints
 theList.Add(pnt)
 end
 theFTab.RemoveRecord(selrec)
end

newpolyline = PolyLine.Make(theList)
newrec = theFTab.AddRecord
theFTab.SetValue(theFTab.FindField("Shape"), newrec, newpolyline)

' End the undo

67

theFTab.EndTransaction

theFTab.GetSelection.ClearAll
theFTab.GetSelection.Set(newrec)
theFTab.UpdateSelection

theView.Invalidate

return nil

68

' Pegger.RoadMenu.Survey
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98115
'
' lwrogers@u.washington.edu
'
' March 1st, 2003
'
' Description: Performs a "digital survey" of a selected
' pegged road or all roads if none are selected.
' The digital survey creates a "UNIT SURVEY"
' format .pol file that can be directly imported
' into the ROADENG road engineering package. This
' functionality will only be enabled if three
' conditions exist: Spatial or 3D Analyst must
' be enabled, a valid surface theme must be
' in the current view, and only one feature can
' be selected in the active road theme.
'
' Calls: Pegger.RoadMenu.Survey.Function.Azimuth
'
' Returns: None
'
' Dependencies:Spatial Analyst or 3D Analyst
'
'***
theView = av.GetActiveDoc

'Make sure there is only 1 active theme
if (theView.GetActiveThemes.Count <> 1) then
 MsgBox.Warning("There must be only 1 active theme to survey",
 "RoadMenu.Survey")
 return nil
end

theTheme = theView.GetActiveThemes.Get(0)

'Make sure the theme is a PolyLine
if (theTheme.GetFTab.GetShapeClass.GetClassName <> "PolyLine") then
 MsgBox.Warning("We can only survey PolyLine features.",
 "RoadMenu.Survey")
 return nil
end

'Make sure there is only 1 selected road
if (theTheme.GetFTab.GetSelection.Count <> 1) then
 if (theTheme.GetFTab.GetSelection.Count > 1) then

69

 MsgBox.Warning("We can only survey 1 feature at a time",
 "RoadMenu.Survey")
 elseif (theTheme.GetFTab.GetSelection.Count = 0) then
 MsgBox.Warning("No selected road found to survey",
 "RoadMenu.Survey")
 end
 return nil
end
'***
' Get the dictionary and the contour theme
theDict = theTheme.GetObjectTag
theSurveyId = theDict.Get("SurveyId")
theSurfaceTheme = theDict.Get("SurfaceTheme")
theSideShotDist = theDict.Get("SideShotDist")
theSideShotNum = theDict.Get("SideShotNum")
densify = theDict.Get("Densify")
theDensity = theDict.Get("DensifyDistance")
drawOnScreen = theDict.Get("DrawOnScreen")
theOutFile = theDict.Get("SurveyFile")
'***
'Set additional parameters from dictionary variables
if (theSurfaceTheme.GetClass.GetClassName = "STheme") then
 theSurface = theSurfaceTheme.GetSurface
 theSurfaceType = "STheme"
else
 theSurface = theSurfaceTheme.GetGrid
 theSurfaceType = "GTheme"
end

theOutFile = theOutFile.AsFileName
theSsDistance = theSideShotDist.AsNumber
theNumSs = theSideShotNum.AsNumber
'***
'Get the selected road
theFTab = theTheme.GetFTab
theShapeField = theFTab.FindField("Shape")
theBitmap = theFTab.GetSelection
theRec = theBitmap.GetNextSet(-1)
thePolyLine = theFTab.ReturnValue(theShapeField, theRec)
'***
'Densify survey points?
if ((densify) and (theDensity.IsNumber)) then
 thePointList = thePolyLine.ReturnDensified(theDensity.AsNumber)
 thePointList = thePointList.AsMultiPoint.AsList
else
 thePointList = thePolyLine.AsMultiPoint.AsList
end
'***
'Make a list to store the survey points
theOutList = List.Make
'***
' Number the side shots
theNumPoints = thePointList.Count

70

theSsId = theNumPoints
'***
' Initialize the status bar
av.ClearMsg
av.ClearStatus
av.ShowMsg("Surveying " + theSurveyId + "...")
av.SetStatus(0)
'***
'Loop through the points and get FS, BS and SD information
i = 0
for each pt in thePointList
 ' Update the status bar
 progress = (i/theNumPoints) * 100
 av.SetStatus(progress)
 theOutString = ""
 pt1 = thePointList.Get(i)
 'Draw the survey points on the screen
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(pt1))
 end
 x1 = pt1.GetX.SetFormat("d.dd")
 y1 = pt1.GetY.SetFormat("d.dd")
 if (theSurfaceType = "STheme") then
 z1 = theSurface.Elevation(pt1).SetFormat("d.dd")
 else
 z1 = theSurface.CellValue(pt1, Prj.MakeNull).SetFormat("d.dd")
 end
'***
 if (i = 0) then ' Starting point
 ' Get the next point
 pt2 = thePointList.Get(i + 1)
 x2 = pt2.GetX.SetFormat("d.dd")
 y2 = pt2.GetY.SetFormat("d.dd")
 if (theSurfaceType = "STheme") then
 z2 = theSurface.Elevation(pt2).SetFormat("d.dd")
 else
 z2 = theSurface.CellValue(pt2, Prj.MakeNull).SetFormat("d.dd")
 end
 ' Starting Reference
 theOutList.Add(theSurveyId.AsString + ",SR," + x1.AsString + "," +
 y1.AsString + "," + z1.AsString)

 ' Starting sideshots perpendictular to line
 for each n in 1 .. theNumSs
 d = theSsDistance * n
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x2,y2})
 xSs = x1 + (d * ((theAzimuth + 90).AsRadians.Sin))
 ySs = y1 + (d * ((theAzimuth + 90).AsRadians.Cos))
 ptSs = Point.Make(xSs, ySs)
 if (theSurfaceType = "STheme") then
 zSs = theSurface.Elevation(ptSs).SetFormat("d.dd")
 else

71

 zSs = theSurface.CellValue(ptSs,
Prj.MakeNull).SetFormat("d.dd")
 end

 'Draw the survey points on the screen
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(ptSs))
 end

 'Get the azimuth of the point from the Station
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,xSs,ySs})

 theOutList.Add(theSurveyId.AsString + ",SD," + i.AsString +
 "," + theSsId.AsString +"," +
 theAzimuth.AsString + "," + zSs.AsString +
 "," + d.AsString)

 ' Increment the side shot Id
 theSsId = theSsId + 1

 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x2,y2})
 xSs = x1 + (d * ((theAzimuth - 90).AsRadians.Sin))
 ySs = y1 + (d * ((theAzimuth - 90).AsRadians.Cos))
 ptSs = Point.Make(xSs, ySs)
 if (theSurfaceType = "STheme") then
 zSs = theSurface.Elevation(ptSs).SetFormat("d.dd")
 else
 zSs = theSurface.CellValue(ptSs,Prj.MakeNull).SetFormat("d.dd")
 end
 'Draw the survey points on the screen?
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(ptSs))
 end

 'Get the azimuth of the point from the Station
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,xSs,ySs})

 theOutList.Add(theSurveyId.AsString + ",SD," + i.AsString +
 "," + theSsId.AsString + "," +
 theAzimuth.AsString + "," + zSs.AsString +
 "," + d.AsString)

 ' Increment the side shot Id
 theSsId = theSsId + 1

 end

 'Starting foresight
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x2,y2})

72

 theOutList.Add(theSurveyId.AsString + ",FS," + i.AsString +
 "," + (i + 1).AsString + "," +
 theAzimuth.AsString + "," + z1.AsString +
 "," + pt1.Distance(pt2).AsString)
 '***
 ' Last point so get perpendictular sideshots and no foresight
 elseif (i = (thePointList.Count - 1)) then
 ' Get the last point
 pt0 = thePointList.Get(i - 1)
 x0 = pt0.GetX.SetFormat("d.dd")
 y0 = pt0.GetY.SetFormat("d.dd")
 if (theSurfaceType = "STheme") then
 z0 = theSurface.Elevation(pt0).SetFormat("d.dd")
 else
 z0 = theSurface.CellValue(pt0, Prj.MakeNull).SetFormat("d.dd")
 end

 ' Backsight
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x0,y0})
 theOutList.Add(theSurveyId.AsString + ",BS," + i.AsString +
 "," + (i - 1).AsString + "," +
 theAzimuth.AsString + "," + z1.AsString +
 "," + pt1.Distance(pt0).AsString)

 ' Ending sideshots perpendictular to line
 for each n in 1 .. theNumSs
 d = theSsDistance * n
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x0,y0})
 xSs = x1 + (d * ((theAzimuth + 90).AsRadians.Sin))
 ySs = y1 + (d * ((theAzimuth + 90).AsRadians.Cos))
 ptSs = Point.Make(xSs, ySs)
 if (theSurfaceType = "STheme") then
 zSs = theSurface.Elevation(ptSs).SetFormat("d.dd")
 else
 zSs = theSurface.CellValue(ptSs,
Prj.MakeNull).SetFormat("d.dd")
 end

 'Draw the survey points on the screen?
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(ptSs))
 end

 'Get the azimuth of the point from the Station
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,xSs,ySs})

 theOutList.Add(theSurveyId.AsString + ",SD," + i.AsString +
 "," + theSsId.AsString + "," +
 theAzimuth.AsString + "," + zSs.AsString +
 "," + d.AsString)

73

 ' Increment the side shot Id
 theSsId = theSsId + 1

 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x0,y0})
 xSs = x1 + (d * ((theAzimuth - 90).AsRadians.Sin))
 ySs = y1 + (d * ((theAzimuth - 90).AsRadians.Cos))
 ptSs = Point.Make(xSs, ySs)
 if (theSurfaceType = "STheme") then
 zSs = theSurface.Elevation(ptSs).SetFormat("d.dd")
 else
 zSs = theSurface.CellValue(ptSs,
Prj.MakeNull).SetFormat("d.dd")
 end

 'Draw the survey points on the screen?
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(ptSs))
 end

 'Get the azimuth of the point from the Station
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,xSs,ySs})

 theOutList.Add(theSurveyId.AsString + ",SD," + i.AsString +
 "," + theSsId.AsString + "," +
 theAzimuth.AsString + "," + zSs.AsString +
 "," + d.AsString)

 ' Increment the side shot Id
 theSsId = theSsId + 1

 end
 '***
 else
 ' Intermediate point so get forsight and backsight
 ' Get the last point
 pt0 = thePointList.Get(i - 1)
 x0 = pt0.GetX.SetFormat("d.dd")
 y0 = pt0.GetY.SetFormat("d.dd")
 if (theSurfaceType = "STheme") then
 z0 = theSurface.Elevation(pt0).SetFormat("d.dd")
 else
 z0 = theSurface.CellValue(pt0, Prj.MakeNull).SetFormat("d.dd")
 end
 ' Get the next point
 pt2 = thePointList.Get(i + 1)
 x2 = pt2.GetX.SetFormat("d.dd")
 y2 = pt2.GetY.SetFormat("d.dd")
 if (theSurfaceType = "STheme") then
 z2 = theSurface.Elevation(pt2).SetFormat("d.dd")
 else

74

 z2 = theSurface.CellValue(pt2, Prj.MakeNull).SetFormat("d.dd")
 end

 ' Backsight
 ' Get the azimuth backsight
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x0,y0})
 theOutList.Add(theSurveyId.AsString + ",BS," + i.AsString + "," +
 (i - 1).AsString + "," + theAzimuth.AsString +
 "," + z1.AsString + "," +
 pt1.Distance(pt0).AsString)

 ' Sideshots bisect the angle between backsight and foresight
 for each n in 1 .. theNumSs
 d = theSsDistance * n

 ' Get the X & Y components of the vectors
 vBsx = x0 - x1
 vBsy = y0 - y1
 vFsx = x2 - x1
 vFsy = y2 - y1
 ' Get the magnitudes of the vectors
 vBs = ((vBsx^2) + (vBsy^2)).Sqrt
 vFs = ((vFsx^2) + (vFsy^2)).Sqrt
 ' Get the components of the unit vectors
 uvBsx = vBsx / vBs
 uvBsy = vBsy / vBs
 uvFsx = vFsx / vFs
 uvFsy = vFsy / vFs
 ' Add the unit vectors to get bisector
 bvX = uvBsx + uvFsx
 bvY = uvBsy + uvFsy
 ' Get the magnitude of the bisector
 vB = ((bvX^2) + (bvY^2)).Sqrt
 ' Get the components of the bisector unit vector
 uvBx = bvX / vB
 uvBy = bvY / vB
 ' Multiply the components by distance
 cvX = uvBx * d
 cvY = uvBy * d

 ' If the magnitude is small then not a perpendicular side shot
 if (vB > (0.0001 * pt0.Distance(pt2))) then
 ' Add the components to x1, y1
 xSs = x1 + cvX
 ySs = y1 + cvY
 else 'it is perpendicular
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x0,y0})
 xSs = x1 + (d * ((theAzimuth + 90).AsRadians.Sin))
 ySs = y1 + (d * ((theAzimuth + 90).AsRadians.Cos))
 end

75

 ptSs = Point.Make(xSs, ySs)
 if (theSurfaceType = "STheme") then
 zSs = theSurface.Elevation(ptSs).SetFormat("d.dd")
 else
 zSs = theSurface.CellValue(ptSs,
Prj.MakeNull).SetFormat("d.dd")
 end

 'Draw the survey points on the screen?
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(ptSs))
 end

 ' Get the azimuth of the point from the Station
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,xSs,ySs})

 theOutList.Add(theSurveyId.AsString + ",SD," + i.AsString +
 "," + theSsId.AsString + "," +
 theAzimuth.AsString + "," + zSs.AsString +
 "," + d.AsString)

 ' Increment the side shot Id
 theSsId = theSsId + 1

 ' If the magnitude is small then not a perpendicular side shot
 if (vB > (0.0001 * pt0.Distance(pt2))) then
 ' Subtract the components from x1, y1
 xSs = x1 - cvX
 ySs = y1 - cvY
 else 'it is perpendicular
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x0,y0})
 xSs = x1 - (d * ((theAzimuth + 90).AsRadians.Sin))
 ySs = y1 - (d * ((theAzimuth + 90).AsRadians.Cos))
 end

 ptSs = Point.Make(xSs, ySs)
 if (theSurfaceType = "STheme") then
 zSs = theSurface.Elevation(ptSs).SetFormat("d.dd")
 else
 zSs = theSurface.CellValue(ptSs,
Prj.MakeNull).SetFormat("d.dd")
 end

 'Draw the survey points on the screen?
 if (drawOnScreen) then
 theView.GetGraphics.Add(GraphicShape.Make(ptSs))
 end

 ' Get the azimuth of the point from the Station
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,xSs,ySs})

76

 theOutList.Add(theSurveyId.AsString + ",SD," + i.AsString +
 "," + theSsId.AsString + "," +
 theAzimuth.AsString + "," + zSs.AsString +
 "," + d.AsString)

 ' Increment the side shot Id
 theSsId = theSsId + 1

 end

 ' Foresight
 theAzimuth = av.run("Pegger.RoadMenu.Survey.Function.Azimuth",
 {x1,y1,x2,y2})
 theOutList.Add(theSurveyId.AsString + ",FS," + i.AsString +
 "," + (i + 1).AsString + "," +
 theAzimuth.AsString + "," + z1.AsString +
 "," + pt1.Distance(pt2).AsString)
 end

 i = i + 1
end
'***
'Make output file by writing list to theOutFile
theLineFile = LineFile.Make(theOutFile, #FILE_PERM_WRITE)
theLineFile.Write(theOutList, theOutList.Count)
theLineFile.Close
'***
'Clear the status bar
av.ClearMsg
av.ClearStatus

return nil

77

' Pegger.RoadMenu.Survey.Function.Azimuth
'
' Created By: Luke Rogers
' In pursuit of a Masters of Science
' Forest Engineering
' College of Forest Resources
' University of Washington
' Box 352100
' Seattle, WA 98195
'
' lwrogers@u.washington.edu
'
' December 11th, 2004
'
' Description: Calculates the angle created by two points.
' Based on original work by David F. Kimball.
'
' Calls: Nothing
'
' Returns: Returns the angle (azimuth) formed by the two
' points as a number from 0 - 360.
'
'***
'---
'the script must be passed a list containing either 2 pts or 4 numbers
'Sample script call: av.Run("ReturnLineSegmentAzimuth",{1,1,6,9})
' or av.Run("ReturnLineSegmentAzimuth",{1@1,6@9})
'---
if (SELF.Count = 4) then
 x1 = SELF.Get(0) 'xcoord of first (origin) point
 y1 = SELF.Get(1) 'ycoord of first (origin) point
 x2 = SELF.Get(2) 'xcoord of second point
 y2 = SELF.Get(3) 'ycoord of second point
 p1 = Point.Make(x1,y1)
 p2 = Point.Make(x2,y2)
elseif (SELF.Count = 2) then
 p1 = SELF.Get(0) 'first (origin) point
 p2 = SELF.Get(1) 'second point
 x1 = p1.GetX
 y1 = p1.GetY
 x2 = p2.GetX
 y2 = p2.GetY
else
 return nil
end
'---
'calculate the angle using simple trig:
'---
h = p1.Distance(p2) 'h = the distance between the pts
dX = x2 - x1 'dX = difference in xcoords
dY = y2 - y1 'dY = difference in ycoords
a = 90 - ((dX / h).ACos.AsDegrees) 'a = the angle made by the points
if (dX < 0) then

78

 if (dY < 0) then
 a = 180 + a.Negate
 else
 a = 360 + a
 end
else
 if (dY < 0) then
 a = 180 - a
 end
end
'---
'return the angle as a number between 0 and 360:
'---
return a

	Table of Content
	List of Figures
	Preface
	Acknowledgements*
	Dedication*
	Introduction
	Background
	The Importance of Road Design
	The Importance of Visualization
	Existing Road Design Models
	Existing Forest Visualization Software

	Objectives
	Automate Manual Processes
	“Route Projection” or “Pegging”
	Utilize High-Resolution Topographic Models
	Functional Requirements

	Methods
	ArcView
	Pegging
	Analytical Description

	Survey
	Visualization
	Analytical Description

	Discussion
	Ease of Use
	Proliferation of Software
	Downloads

	Applications to Management
	Limitations

	Conclusions
	Bibliography
	Appendix A – PEGGER Software Manual
	Appendix B – PEGGER Avenue™ Code

